实时计算 Flink版产品使用合集之oracle cdc 抽取新增一张表 可以从savepoint恢复吗

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC实时的调度 有什么组成部分吗?


Flink CDC实时的调度 有什么组成部分吗?


参考回答:

Flink CDC 实时调度主要由以下几个组件组成:

  1. Flink JobManager:负责管理 Flink 程序的运行和资源分配。
  2. Flink TaskManager:负责执行具体的任务,并将结果返回给 JobManager。
  3. Kafka Broker:存储并分发数据,为 Flink CDC 提供实时数据源。
  4. ZooKeeper:用于协调 Kafka 集群中的节点状态,以及 Flink CDC 的实时调度。
  5. MySQL/MongoDB 数据库:提供要同步的数据。

在实时调度过程中,Flink CDC 会定期从 Kafka 中读取新的数据,并将其转换为适合 Flink 处理的数据流。然后,这些数据流会被发送到 Flink TaskManager 进行处理,并最终将结果写入目标数据库中。

此外,ZooKeeper 在实时调度过程中也起着重要的作用。它会监控 Kafka 和 Flink 的状态,并确保它们之间的协调。如果出现任何问题,ZooKeeper 将尝试重新安排任务或通知管理员进行干预。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570175


问题二:Flink CDC有springboot整合flink的资料吗?


Flink CDC有springboot整合flink的资料吗?


参考回答:

flink 官方 是不推荐整合spring 的,不过自己想想..确实 spring 一整套跑起来比较简单 .省的自己配置各种参数 .组件系统架构了.,外部配置文件可以自己写一个propertiesUtil类读。只是读文件确实没必要存在的,flink需要最大化的利用资源,不建议进行其他方面的整合;而且分布式的情况下,不太好处理


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570174


问题三:Flink CDC中oracle cdc 抽取新增一张表 可以从savepoint恢复吗 ?


Flink CDC中oracle cdc 抽取新增一张表 可以从savepoint恢复吗 ?


参考回答:

这个目前不能,不支持动态加表


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570173


问题四:Flink cancel 任务取消中如何强制停止呢?


Flink cancel 任务取消中如何强制停止呢?


参考回答:

可以通过以下步骤强制停止 Flink 任务:

flink cancel -f [job-id]

注意,强制停止会对集群产生影响,可能会影响数据一致性。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568870


问题五:请教个flink问题:如何排查source到sink中间-d的数据是怎么丢的呢?


大佬们请教个flink问题:

kafka读数据,中间关联hbase维表,再落kafka;

在此期间,hbase集群故障,导致任务报hbase 异步IO超时,无限重启,ck失败;

集群恢复正常后从最后的ck恢复任务,结果丢失了一部分-d的changelog,导致多出来一部分数据.目前能定位到这部分数据是在hbase故障期间进kafka source 的;如何排查source到sink中间-d的数据是怎么丢的呢?


参考回答:

对于Flink任务的数据丢失问题,你可以从以下几个方面进行排查:

  1. Flink任务的checkpoint机制:检查Flink任务的checkpoint配置,确保其配置正确且能够正常触发。同时,检查任务是否在异常情况下成功完成了checkpoint。
  2. Flink任务的state backend:检查Flink任务的state backend配置,确保其配置正确且能够正常工作。同时,检查任务的状态后端是否能够在故障发生时正确地保存和恢复状态。
  3. Flink任务的并行度:检查Flink任务的并行度设置,确保其设置正确且能够满足任务的需求。过低的并行度可能会导致数据处理速度跟不上数据生成速度,从而导致数据丢失。
  4. Flink任务的内存管理:检查Flink任务的内存管理配置,确保其配置正确且能够正常工作。同时,检查任务是否因为在处理大量数据时内存不足而导致数据丢失。
  5. Flink任务的数据处理逻辑:检查Flink任务的数据处理逻辑,确保其逻辑正确且没有遗漏或错误。同时,检查任务在处理数据时是否因为某些特殊情况(如数据格式错误、数据缺失等)而导致数据丢失。
  6. Flink任务的监控和日志:检查Flink任务的监控和日志,以获取更多的关于任务运行情况的详细信息。通过分析监控数据和日志信息,你可能能够找到数据丢失的原因。
  7. Flink任务的资源分配:检查Flink任务的资源分配情况,确保其资源分配合理且能够满足任务的需求。过低的资源分配可能会导致任务在处理数据时性能下降,从而导致数据丢失。
  8. Flink任务的优化:根据上述排查结果,对Flink任务进行相应的优化,以提高任务的稳定性和可靠性。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568868

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
9天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
622 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
5天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
22 9
|
6天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
22天前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
31 2
|
22天前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
57 1
|
25天前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
23天前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
24天前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
33 0
|
1月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
109 0
|
22天前
|
存储 Oracle 关系型数据库
Oracle数据库的应用场景有哪些?
【10月更文挑战第15天】Oracle数据库的应用场景有哪些?
140 64

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多
    下一篇
    无影云桌面