基于多目标粒子群算法的配电网储能选址定容(含MATLAB程序)

简介: 基于多目标粒子群算法的配电网储能选址定容(含MATLAB程序)

一、主要内容

程序是对文章《基于多目标粒子群算法的配电网储能选址定容》的方法复现,具体内容如下:

以系统节点电压水平(电网脆弱性)、网络损耗以及储能系统总容量为目标建立了储能选址定容优化模型。求解过程中提出了一种改进多目标粒子群算法(improved multi—objective particle swarm optimizer,IMOPSO)。该算法根据粒子与种群最优粒子的距离来指导惯性权重的取值,使得各粒子的惯性权重可以自适应调整,并在二者距离较小时引入交叉变异操作,避免陷入局部最优解,同时采用动态密集距离排序来更新非劣解集并指导种群全局最优解的选取,在保持解集规模的同时使解的分布更均匀。为避免决策者偏好对最终结果的影响,采用基于信息熵的序数偏好法从最优Pareto解集中选取储能的最优接入方案。以IEEE33节点配电系统为例进行仿真验证,结果表明该方法在储能选址定容问题求解中具有很好的收敛性以及全局搜索能力。

二、主要流程

储能选址定容在智能算法中的实现过程不难,刚开始变量定义部分,主要是涉及储能选址的位置、容量和储能出力,以这两部分变量作为优化变量,通过设置最大值和最小值确定变量上下限范围。

下一步的关键点就是约束处理部分,对于储能soc约束,在单目标实现过程中可以采用罚函数的表达方式,但是在多目标求解过程中最好是采用绝对约束表达方式,因为多目标的帕累托解集有可能将不满足约束条件的目标值也筛选进入解集中,就会导致解集的不准确。

最后就是设置目标值,对于配电网节点系统,要注意潮流计算方式的选择和储能出力对系统影响,然后设置不同的目标值。

上述都设置清楚后,采用智能算法进行求解就简单了,多目标算法要注意采用拥挤距离识别方法保证解集分布的合理性(ps:之前有同学付费要解决解集分布不合理问题,被我拒绝了,直接发给他这个程序参考一下完美解决,这种方法已经很成熟,也有很多的参考,很容易解决,没必要花冤枉钱)。

三、部分程序

%% ***************导入网络参数******************%
 
FH1=[2084,1933,1782,1657,1564,1612,1982,2189,2412,2729,2905,3096,3189,3073,3000,2917,3149,3355,3526,3620,3715,3276,2911,2309];
 
% plot(FH1)%输入全天的负荷数据
 
WT1=[201,191,193,201,205,210,204,180,139,110,94,88,76,79,82,86,90,95,105,117,129,141,158,187];   %输入全天的风电数据
 
% plot(WT1)
 
PV1=[0,0,0,0,0,0,0,14,29,76,121,154,193,205,193,174,122,69,45,11,0,0,0,0];   %输入全天的光伏数据
 
% plot(PV1)
 
Generator=xlsread('GEN.xlsx','A2:U8');   %输入发电机矩阵参数,其中20,14接风电;9,30接光伏
 
Bus=xlsread('BUS.xlsx','A2:M34');    %输入负荷矩阵参数,matpower数据格式,第3列和第4列为有功和无功负荷所占总有功和无功负荷比例
 
FH=FH1/1000;   %将kw化为mw,调整渗透率
 
WT=2*WT1/1000;
 
PV=2*PV1/1000;
 
FHBus=Bus;
 
T=24;
 
for t=1:T
 
    FHP(:,t)=FH(1,t)*Bus(:,3);      %求各个时间段的有功负荷
 
    FHQ(:,t)=FH(1,t)*2.3/3.715*Bus(:,4);   %求各个时间段的无功负荷【常数什么意思】
 
end
 
% *******************导入结束********************%
 
%% ****************决策空间的设置1**************%
 
maxFun=3;                    %三个目标函数
 
 fff=[0,1;0.05,0.4;0.2,2]; %各个目标函数的最小值和最大值,即绝对正理想解和绝对负理想解,可分别设单目标求解
 
%fff=[0,0.4;30,100;10000,20000];  
 
n = 50;                         % 初始种群个数
 
d = 52;                          % 空间维数,即决策变量(各设备控制量)个数
 
maxIterations = 50;            % 最大迭代次数
 
wmax=0.9;          %maximum of inertia factor,最大惯性系数
 
wmin=0.4;          %minimum of inertia factor,最小惯性系数
 
c1=1.4962;              %1.4962; %learning factor1,自我学习因子
 
c2=1.4962;              %1.4962; %learning factor2,群体学习因子
 
soc=0.5;
 
 
 
X1limit = [2, 33];              % 设置选址参数限制
 
%X2limit = [0.2, 2.5];              % 设置容量参数限制,统一化成MW
 
X2limit = [1, 2];              % 设置容量参数限制,统一化成MW
 
V1limit = [-31, 31];               % 设置速度限制
 
%V2limit = [-2.3, 2.3];              % 设置速度限制
 
V2limit = [-1.8, 1.8];
 
Xmax=[X1limit(1,2),X1limit(1,2),X2limit(1,2),X2limit(1,2)];
 
Xmin=[X1limit(1,1),X1limit(1,1),X2limit(1,1),X2limit(1,1)];
 
dX=Xmax-Xmin;
 
Vmax=dX;
 
%***********决策空间设置1结束**********%
 
 
 
%% ******种群位置与速度初始化*******%    
 
X1 = round(X1limit(1, 1) + (X1limit(1, 2) - X1limit(1, 1)) * rand(n, 2));        %初始种群的位置(节点位置)四舍五入取整
 
X2 = X2limit(1, 1)+(X2limit(1, 2)-X2limit(1, 1)) * rand(n, 2);       %初始种群的位置(容量大小)
 
X = [X1,X2];                %初始种群的位置
 
 
 
V1 = V1limit(1, 2) * (2*rand(n, 2)-1);     %初始种群的速度
 
V2 = V2limit(1, 2) * (2*rand(n, 2)-1);     %初始种群的速度
 
V=[V1,V2];                      % 初始种群的速度
 
%*****24小时储能出力变量初始化*********%
 
E1=zeros(n,T+1);   %储能1各时段的剩余容量,即SOC
 
E2=zeros(n,T+1);   %储能2各时段的容量
 
E1(:,1)=0.5*X(:,3);   %初始容量设为50%总容量【拟采用40%】
 
E2(:,1)=0.5*X(:,4);
 
x1limit = [-0.5, 0.5];              % 设置储能有功出力约束
 
xmax=[Xmax,x1limit(1,2)*ones(1,48)];
 
xmin=[Xmin,x1limit(1,1)*ones(1,48)];
 
dx=xmax-xmin;
 
v1limit = [-1, 1];                % 设置储能有功出力约束
 
vmax=dx;
 
%******变量维数(总共52维)解释:位置1,位置2,额定容量1,额定容量2,储能1的24小时出力,储能2的24小时出力
 
x=[X,bsxfun(@times,x1limit(1,2)*ones(1,48),(2*rand(n, 48)-1))];
 
v=[V,bsxfun(@times,v1limit(1,2)*ones(1,48),(2*rand(n, 48)-1))];

四、程序结果

程序下载方式可私信或评论方式获取!

相关文章
|
10天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
14 3
|
22天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
22天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
30天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
1月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
15天前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
25天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
WK
|
2月前
|
算法
粒子群算法的优缺点分别是什么
粒子群优化(PSO)算法概念简单,易于编程实现,参数少,收敛速度快,全局搜索能力强,并行处理高效。然而,它也容易陷入局部最优,参数设置敏感,缺乏坚实的理论基础,且性能依赖初始种群分布,有时会出现早熟收敛。实际应用中需根据具体问题调整参数以最大化优势。
WK
238 2
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
190 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码