算法的时间复杂度和空间复杂度

简介: 算法的时间复杂度和空间复杂度

和我一起学数据结构了开始>>数据结构呈上,希望大家满意啦


算法效率

怎么衡量一个算法的好坏

 算法在编写可执行程序后,运行需要时间和空间,所以衡量一个算法的好坏是从时间和空间两个维度来衡量

时间复杂度:主要是衡量一个算法的运行快慢

空间复杂度:主要衡量一个算法的运行所需要的额外空间

时间复杂度

时间复杂度的概念

    在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间。

    算法中的基本操作的执行次数,为算法的时间复杂度。

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

我们来看一个代码

1. void Func1(int N)
2. {
3.  int count = 0;
4.  for (int i = 0; i < N; ++i)
5.  {
6.    for (int j = 0; j < N; ++j)
7.    {
8.      ++count;
9.    }
10.   }
11.   for (int k = 0; k < 2 * N; ++k)
12.   {
13.     ++count;
14.   }
15.   int M = 10;
16.   while (M--)
17.   {
18.     ++count;
19.   }
20.   printf("%d\n", count);
21. }

这里的Func1执行的操作次数:N^2+2*N+10;

我们计算不一定要计算精确的执行次数,只需要抓大头,就是影响结果最大的那个,在这里,影响最大的就是N^2,这种就叫大o的渐进表示法,在这里表示O(N^2)

例子1

1. int BinarySearch(int* a, int n, int x)
2. {
3.  assert(a);
4.  int begin = 0;
5.  int end = n - 1;
6.  // [begin, end]:begin和end是左闭右闭区间,因此有=号
7.  while (begin <= end)
8.  {
9.    int mid = begin + ((end - begin) >> 1);
10.     if (a[mid] < x)
11.       begin = mid + 1;
12.     else if (a[mid] > x)
13.       end = mid - 1;
14.     else
15.       return mid;
16.   }
17.   return -1;
18. }

基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)

ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)

空间复杂度

概念

     空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

     空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

     空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

例子1

1. long long* Fibonacci(size_t n)
2. {
3.  if (n == 0)
4.    return NULL;
5.  long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
6.  fibArray[0] = 0;
7.  fibArray[1] = 1;
8.  for (int i = 2; i <= n; ++i)
9.  {
10.     fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
11.   }
12.   return fibArray;
13. }

动态开辟了N个空间,空间复杂度为 O(N)

一些常见的复杂度对比

轮转数组(力扣上面的题目)

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3

输出: [5,6,7,1,2,3,4]

解释:

向右轮转 1 步: [7,1,2,3,4,5,6]

向右轮转 2 步: [6,7,1,2,3,4,5]

向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:

输入:nums = [-1,-100,3,99], k = 2

输出:[3,99,-1,-100]

解释:

向右轮转 1 步: [99,-1,-100,3]

向右轮转 2 步: [3,99,-1,-100]

   思路1:一般来说会采用循坏来解决,采用一for循坏,保留最后一个数,然后整个数组向后移,第一个位置内容令为一开始保留的位置

   思路2:前n-k个逆置,后k个逆置,最后整体逆置

代码练习网页:

力扣轮换数组


今天就到这里了,如果学到一点点知识,可以点个小赞)

 


相关文章
|
23天前
|
机器学习/深度学习 算法 程序员
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
本文是作者阅读《趣学算法》后的笔记,介绍了算法复杂度的基本概念,包括时间复杂度和空间复杂度的不同阶表示,并通过具体例子展示了如何计算和理解算法的效率。
55 2
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
|
1月前
|
机器学习/深度学习 存储 算法
算法时间复杂度分析
这篇文章讲解了如何分析算法的时间复杂度,包括关注循环执行次数最多的代码段、总复杂度的确定、嵌套代码复杂度的计算方法,并提供了大O阶的推导步骤和常见时间复杂度的列表,同时还介绍了空间复杂度的概念及其重要性。
|
1月前
|
搜索推荐
九大排序算法时间复杂度、空间复杂度、稳定性
九大排序算法的时间复杂度、空间复杂度和稳定性,提供了对各种排序方法效率和特性的比较分析。
52 1
|
2月前
|
存储 缓存 算法
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
【7月更文挑战第23天】在Python算法设计中,时间与空间复杂度是关键考量,需精妙平衡以优化程序性能。时间复杂度反映算法随输入规模增长的执行时间趋势,空间复杂度关注额外存储需求。线性搜索O(n)时间,O(1)空间;二分搜索O(log n)时间,O(1)空间,提升效率;动态规划如斐波那契数列O(n)时间与空间,利用存储减小计算。实际应用需按场景需求调整,如实时数据偏重时间,资源受限环境优先考虑空间。平衡两者,理解算法本质,结合实践,创造高性能程序。
36 7
|
2月前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第23天】在Python算法设计中,时间与空间复杂度是幕后操控程序效率的双雄。时间复杂度反映算法执行时间随输入规模增长的速度,空间复杂度则计量算法运行时额外内存的使用。如顺序查找的时间复杂度O(n)与固定空间O(1),对比冒泡排序的O(n^2)时间和快速排序的O(n log n)时间优势,后者虽递归消耗空间,但在多数情况下提供更佳性能。根据需求,可权衡选择,如利用哈希表在充足内存下实现O(1)查找,或在空间受限时,偏好空间效率更高的算法,实现Python代码的高性能与优雅。
40 6
|
2月前
|
存储 算法 搜索推荐
揭秘!Python算法设计的隐形杀手:忽视时间复杂度与空间复杂度的后果有多严重?
【7月更文挑战第24天】在 Python 编程中, 算法设计是性能与效率的基石。忽视时间复杂度 (如使用 O(2^n) 的斐波那契数列递归算法而非 O(n) 的动态规划版本) 和空间复杂度 (如在插入排序中每次迭代都复制整个已排序数组, 导致 O(n^2) 的空间复杂度) 可能严重拖累程序。性能优化至关重要, 合理的算法设计保证程序高效稳定, 是攀登技术高峰的坚实阶梯。
37 3
|
2月前
|
算法 搜索推荐 数据处理
震惊!Python算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第24天】在编程世界里, Python以简洁强大备受欢迎, 但算法设计与复杂度分析对程序性能至关重要。算法是程序的灵魂, 其效率直接影响数据处理能力。时间复杂度衡量算法执行速度, 如冒泡排序O(n²)与快速排序O(n log n)的显著差异; 空间复杂度关注内存占用, 递归算法需警惕栈溢出风险。优秀算法需平衡时间和空间效率, 深入理解问题本质, 迭代优化实现高效可靠。
32 2
|
2月前
|
算法 Python
算法小白秒变高手?一文读懂Python时间复杂度与空间复杂度,效率翻倍不是梦!
【7月更文挑战第24天】在编程中,算法效率由时间复杂度(执行速度)与空间复杂度(内存消耗)决定。时间复杂度如O(n), O(n^2), O(log n),反映算法随输入增长的耗时变化;空间复杂度则衡量算法所需额外内存。案例对比线性搜索(O(n))与二分搜索(O(log n)),后者利用有序列表显著提高效率。斐波那契数列计算示例中,递归(O(n))虽简洁,但迭代(O(1))更节省空间。掌握这些,让代码性能飞跃,从小白到高手不再是梦想。
43 1
|
14天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
14天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。