R语言社区发现算法检测心理学复杂网络:spinglass、探索性图分析walktrap算法与可视化

简介: R语言社区发现算法检测心理学复杂网络:spinglass、探索性图分析walktrap算法与可视化

原文链接:http://tecdat.cn/?p=24613


我们在心理学网络论文中看到的一个问题是,作者有时会对其数据的可视化进行过度解释。这尤其涉及到图形的布局和节点的位置,例如:网络中的节点是否聚集在某些社区。

下面我将详细讨论这个问题,并提供一个关于如何识别网络中项目社群的基本R教程。非常欢迎在下面的评论部分提出反馈。


节点部署和 Fruchterman-Reingold 算法


我们创建一个例子。首先,我们拿一些数据,估计一个正则化的偏相关网络,其中节点之间的边类似于偏相关,并使用'spring'命令绘制网络。这是心理学网络文献中默认的,使用Fruchterman-Reingold算法为图中的节点创建一个布局:具有最多连接/最高连接数的节点被放在图的中心。

cort<- cor(data)
 
graph(cort,layout="spring")

matrix 是这 20 个项目的相关矩阵, Size 命令告诉我们有多少人。

这是结果图:

然而,这里的节点部署只是许多同样 "正确 "的节点部署方式中的一种。当网络中只有1-3个节点时,算法将总是以同样的方式部署它们(其中节点之间的边的长度代表它们之间的关系有多强),算法唯一的自由度是图形的旋转。但是,特别是在有许多节点的图中,部署方式只告诉我们一个非常粗略的结果,不应该被过度解释。


点击标题查阅往期内容


R语言复杂网络分析:聚类(社区检测)和可视化


01

02

03

04


以下是绘制我们上述网络的另外两种方法,它们同样 "正确"。

nNd <- 20
set.seed(1)
grh2<-grph
set.seed(2)
gr3<-grph

虽然项目之间的边显然是相同的,但节点的位置却有很大的不同。


欧洲神经精神药理学例子


《欧洲神经精神药理学》(European Neuropsychopharmacology)上Madhoo & Levine的一篇新论文为这个问题提供了一个很好的例子。他们在两个时间点(相隔12周)调查了约2500名被诊断为重度抑郁症的精神科门诊病人的14种抑郁症状的网络结构。这篇论文的一个非常不错的贡献是,他们研究了网络结构随时间的变化,其方式与我们以前在同一数据集中的研究有些不同。

与上面的网络例子类似,他们使用正则化的偏相关网络来估计两个时间点的横截面网络模型,并使用Fruchterman-Reingold算法绘制网络。他们通过目测得出结论,有4个症状群存在,而且这些症状群没有随时间变化。

"在基线时,网络由四个症状群组成(图1a),即:睡眠障碍(项目1-5),认知和物理动机缺损(项目6-9),情感(项目10-12)和食欲(项目(13-14)。

[...]终点症状分组(图1b)与基线时相似"。

但这些发现和结论仅仅是基于对结果图的视觉检查--而我们在上面已经了解到,对这些图的解释应该非常谨慎。值得注意的是,这种视觉上的过度解读在心理学网络文献中相当常见。

让人眼前一亮的另一个原因是,我们在最近的一篇论文中分析了同一数据集的社群结构,发现社群的数量随时间而变化--这与作者对图表的视觉解释相冲突。


R中的数据驱动的社群聚类


那么,如何在R中做到这一点?有许多可能性,我介绍三种:一种来自潜变量建模领域的非常成熟的方法(特征值分解);一种来自网络科学的成熟算法(spinglass算法);以及一种正在开发中的非常新的工具(使用walktrap算法的探索性图分析)。


特征值分解


传统上,我们想用潜变量框架来描述上述20个项目,问题是:我们需要多少个潜变量来解释这20个项目之间的协方差?一个非常简单的方法是查看数据中各成分的特征值。

plot(eigen)
abline(h=1)


这向我们显示了Y轴上每个成分的每个特征值;X轴显示了不同的成分。一个高的特征值意味着它能解释项目之间的大量协方差。红线描述了所谓的标准:一个简单的规则,决定我们需要多少个成分来充分描述项目之间的协方差(每个成分的特征值>1)。无论如何,根据我们现在使用的规则,我们可能会决定提取2-5个成分。我们还不知道哪个项目属于哪个成分--为此,我们需要运行,例如,探索性因子分析(EFA),看看因子载荷。

为什么这与网络有关呢?许多论文现在已经表明,潜变量模型和网络模型在数学上是等价的,这意味着在大多数情况下,支撑数据的因素的数量将转化为你在网络中可以找到的社区的数量。


Spinglass算法


第二种方法是所谓的spinglass算法,该算法在网络科学中已经非常成熟。为此,我们将上面估计的网络输入到R中。最相关的部分是最后一行membership。

spinglascmy(g)
mershp

在我们的例子中,spinglass算法检测到了5个社区,这个向量代表了这20个节点属于哪个社区(例如,节点1-7属于社区5)。然后,我们可以很容易地在qgraph中绘制这些社区,例如,对节点进行相应的着色。请注意,iqgraph是一个非常通用的软件包,除了spinglass算法之外,它还有许多其他检测社区的可能性,比如walktrap算法。(感谢Alex Millner对igraph的投入;当然,这里所有的错误都是我的错误)。

值得注意的是,spinglass算法每次运行都会导致不同的结果。这意味着你应该在运行spinglass.community之前通过set.seed()设置一个种子,而不是像我上面那样。我运行该算法1000次,看看得到的聚类数量的中位数,然后找到一个能重现这个聚类数量中位数的种子。我在一篇论文中使用了这个解决方案(注意,使用不同的种子,解决方案看起来是不同的)。

同样关键的是,要知道有许多种不同的方法来做社群检测。Spinglass有些简单化,因为它只允许项目成为一个社区的一部分--但可能项目被描述为同时属于几个社区更好。Barabási的书 "网络科学 "中有一个关于社区检测的广泛章节。Spinglass只是众多机会中的一个。正如我上面提到的:例如walktrap,也是常用的,而且更稳定。


探索性图分析


第三种方法是通过探索性图表分析。从你的数据中重新估计了一个正则化的部分相关网络,与我们上面所做的类似,然后使用walktrap算法来寻找网络中的项目社群。在使用walktrap算法的情况下,这应该会得到与igraph相同的结果(并且细节设置相同,比如步骤数)。

优点是--与特征值分解不同--它直接显示哪些项目属于哪些社群。

walktrap(da, plt= TRUE)

如果这个方法被证明是有效的,它非常容易使用,并自动显示你的项目属于哪个社区。

请注意,目前,探索性图分析采取你的数据并自动估计一个高斯图形模型(假设是多变量的正常变量)。


spinglass算法和walktrap算法结果是一样的吗?


现在,我们想检查一下我们的结果的稳健性:spinglass算法和使用walktrap算法在社区检测方面是否一致?

这很容易做到:让我们把这两个网络画在一起,并对社区进行相应的着色。首先,我们根据结果来定义社群,然后用上面第一个网络的布局来绘制网络。

walktrap(coate tile="walktap")
 
spinglass(coratix, tite="spinglass")

直觉上--基于视觉检查--walktrap的解决方案似乎更有意义,其中节点8属于蓝色社区而不是紫色社区。但是,同样,这只是复杂关系的图形显示,我们在这里必须谨慎解释。

因此,让我们用一个稍微不同的布局来绘制同一个网络。

walktrap(layou = list(int = atinomNe2,no,2)))
spinglass(cori,  layo.pr = list(iit=matrxnrm(Nd2)nde2

正如你现在看到的,在这个可视化中,不清楚节点8应该属于蓝色还是红色社区,我们没有明确的直观偏好。


结论


如果你对网络中的项目之间的统计社区感兴趣,不要只在视觉上检查你的图。当我为论文做这件事时,我使用上面描述的三种方法,通常它们的结果相当相似。显然,你也可能对理论或概念更感兴趣。在这种情况下,你可能根本不需要看你的数据,不需要经历上述所有的麻烦。

请注意,上述spinglass或walktrap等社群检测方法的最大局限是,项目确定地只属于一个社群。对于心理学数据来说,拟合因子模型经常会发现有交叉负荷的项目,这是一个问题。而你可以通过模拟一个2因子模型看到,其中1个项目在两个因子上都有同样的载荷。希望我们很快就能在R中实现允许项目同时属于多个社区的算法(Barabási在他的《网络科学》一书第9章中描述了几个。

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
62 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
6天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
73 30
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
25天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
74 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
61 7
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
79 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
6天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
7天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
27 10