如何使用Sklearn库实现线性回归

简介: 使用Sklearn实现线性回归的步骤:导入numpy, matplotlib, LinearRegression, train_test_split和metrics模块;准备数据集;划分训练集和测试集;创建线性回归模型;训练模型并预测;计算MSE和R²评估性能;可视化预测结果。示例代码展示了这些步骤,包括数据生成、模型训练及结果展示。

要使用Sklearn库实现线性回归,可以按照以下步骤进行操作:

  1. 导入所需的库和模块。
  2. 准备数据集。
  3. 划分训练集和测试集。
  4. 创建线性回归模型并设置参数。
  5. 训练模型并进行预测。
  6. 评估模型性能。
  7. 可视化结果。

以下是具体的代码实现:

# 导入所需的库和模块
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# 准备数据集
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y = np.array([2, 4, 6, 8, 10])

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型并设置参数
lr = LinearRegression()

# 训练模型并进行预测
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)

# 评估模型性能
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R2 Score:", r2)

# 可视化结果
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', label='Predicted')
plt.legend()
plt.show()

在这个例子中,我们首先导入了所需的库和模块,然后创建了一个简单的数据集。接下来,我们将数据集划分为训练集和测试集,然后创建了一个线性回归模型。我们使用训练集对模型进行训练,并使用测试集进行预测。最后,我们评估了模型的性能并可视化了结果。

相关文章
|
Windows
FL Studio 21最新版本下载附激活序列号
FL Studio 21版 是一款非常强大的音乐制作软件。他适用于 Windows 以及 Mac系统,FL Studio被誉为最人性化的音乐制作软件,哪怕你没有使用基础,也能轻松上手,用他把自己的灵感变为音乐。
3489 0
|
NoSQL 前端开发
cassandra nodetool常用命令介绍
简介 nodetool是cassandra自带的外围工具,通过JMX可以动态修改当前进程内存数据,注意cassandra是无主对等架构,默认的命令是操作本机当前进程,例如repair,如果需要做全集群修复,需要在每台机器上执行对应的nodetool命令。
4249 0
|
8月前
|
数据采集 存储 JSON
用Python爬虫抓取数据并保存为JSON的完整指南
用Python爬虫抓取数据并保存为JSON的完整指南
|
Ubuntu 安全 网络协议
|
人工智能 搜索推荐 Ubuntu
[AI Perplexica] 安装指南:轻松部署AI驱动的开源搜索引擎
详细讲解如何在本地环境中使用Docker部署AI驱动的开源搜索引擎Perplexica,让您快速上手体验其强大功能。
[AI Perplexica] 安装指南:轻松部署AI驱动的开源搜索引擎
|
开发框架 前端开发 JavaScript
CodeSandbox
【8月更文挑战第29天】CodeSandbox
671 62
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
986 1
|
10月前
|
存储 移动开发 JavaScript
网页 HTML 自动播放下一首音乐
在 HTML5 中实现自动播放下一首音乐,通过管理音乐列表、操作音频元素和监听事件完成。创建包含多个音乐链接的列表,使用 `<audio>` 元素加载音乐,监听 `ended` 事件,在当前音乐结束时自动播放下一首。示例代码展示了如何使用 JavaScript 实现这一功能,确保无缝切换音乐。
|
机器学习/深度学习 并行计算 算法
机器学习算法原理:详细介绍各种机器学习算法的原理、优缺点和适用场景
机器学习算法原理:详细介绍各种机器学习算法的原理、优缺点和适用场景
4583 0
FFmpeg学习笔记(二):多线程rtsp推流和ffplay拉流操作,并储存为多路avi格式的视频
这篇博客主要介绍了如何使用FFmpeg进行多线程RTSP推流和ffplay拉流操作,以及如何将视频流保存为多路AVI格式的视频文件。
1393 0