算法系列--动态规划--背包问题(3)--完全背包介绍(下)

简介: 算法系列--动态规划--背包问题(3)--完全背包介绍(下)

算法系列--动态规划--背包问题(3)--完全背包介绍(上)

https://developer.aliyun.com/article/1480854?spm=a2c6h.13148508.setting.14.5f4e4f0ewTpliD

💕"Su7"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(3)–完全背包介绍

大家好,今天为大家带来的是算法系列--动态规划--背包问题(3)--完全背包介绍

代码:

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    public static void main(String[] args) {
        // 1.解决第一问
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和体积
        int[] v = new int[n + 1], w = new int[n + 1];
        for(int i = 1; i <= n; i++) {
            v[i] = in.nextInt();// 物品体积
            w[i] = in.nextInt();// 物品价值
        }
        int[][] dp = new int[n + 1][V + 1];
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i-1][j];
                if(j - v[i] >= 0)
                    dp[i][j] = Math.max(dp[i][j],dp[i][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V]);
        // 1.解决第二问
        dp = new int[n + 1][ V + 1];// 好的代码风格?
        for(int j = 1; j <= V; j++) dp[0][j] = -1;
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0 && dp[i][j - v[i]] != -1)
                    dp[i][j] = Math.max(dp[i][j],dp[i][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V] == -1 ? 0 : dp[n][V]);
    }
}

空间优化:

同样的在完全背包问题中也可以进行空间优化(想想01背包问题中的空间优化,通过明确遍历顺序,只是用一个简单的线性数组就可以完成填表)

01背包问题的空间优化最需要注意的就是遍历顺序的改变,在01背包问题中,为了在填表的时候需要使用的数据不被覆盖掉,需要从右往左遍历,但是在完全背包问题中,需要从左往右遍历

空间优化后的代码:

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    public static void main(String[] args) {
        // 1.解决第一问
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和体积
        int[] v = new int[n + 1], w = new int[n + 1];
        for(int i = 1; i <= n; i++) {
            v[i] = in.nextInt();// 物品体积
            w[i] = in.nextInt();// 物品价值
        }
        int[] dp = new int[V + 1];
        for(int i = 1; i <= n; i++)
            for(int j = v[i]; j <= V; j++)
                dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
        System.out.println(dp[V]);
        // 2.解决第二问
        dp = new int[ V + 1];// 好的代码风格?
        for(int j = 1; j <= V; j++) dp[j] = -1;
        for(int i = 1; i <= n; i++)
            for(int j = v[i]; j <= V; j++)
                if(dp[j - v[i]] != -1)
                    dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
            
        System.out.println(dp[V] == -1 ? 0 : dp[V]);
    }
}

以上就是算法系列--动态规划--背包问题(3)--完全背包介绍全部内容,下一篇文章将会带来完全背包问题的拓展题目,敬请期待,我是LvZi


目录
相关文章
|
2月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
60 8
|
1月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
1月前
|
算法 Java 测试技术
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
这篇文章介绍了基于动态规划法的三种算法:解决背包问题的递归和自底向上实现、Warshall算法和Floyd算法,并提供了它们的伪代码、Java源代码实现以及时间效率分析。
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
|
2月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
62 2
|
2月前
|
算法 程序员 Python
算法小白到大神的蜕变之路:Python分治法、贪心、动态规划,一步步带你走向算法巅峰!
【7月更文挑战第9天】探索算法之旅,以Python解锁编程高手之路。分治法如二分查找,将复杂问题拆解;贪心算法解决活动选择,每次选取局部最优;动态规划求斐波那契数列,避免重复计算,实现全局最优。每一步学习,都是编程能力的升华,助你应对复杂挑战,迈向算法大师!
34 1
|
2月前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
49 1
|
2月前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
51 1
|
2月前
|
存储 算法 大数据
Python算法高手的必修课:深入理解分治法、贪心算法、动态规划,让你的代码更智能!
【7月更文挑战第9天】在Python算法学习中,分治法(如归并排序)将大问题分解为小部分递归解决;贪心算法(如货币找零)在每步选择局部最优解尝试达到全局最优;动态规划(如斐波那契数列)通过存储子问题解避免重复计算,解决重叠子问题。掌握这三种方法能提升代码效率,解决复杂问题。
35 1
|
2月前
|
算法 索引 Python
逆袭算法界!Python分治法、贪心算法、动态规划深度剖析,带你走出算法迷宫!
【7月更文挑战第8天】分治法,如快速排序,将大问题分解并合并解;贪心算法,选择局部最优解,如活动选择;动态规划,利用最优子结构避免重复计算,如斐波那契数列。Python示例展示这些算法如何解决实际问题,助你精通算法,勇闯迷宫。
30 1
|
14天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。