算法系列--动态规划--背包问题(2)--01背包拓展题目(上)

简介: 算法系列--动态规划--背包问题(2)--01背包拓展题目

💕"2024.3.28小米汽车发布"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(2)–01背包拓展题目

大家好,今天为大家带来的是算法系列--动态规划--背包问题(2)--01背包拓展题目

1.分割等和⼦集

链接:

https://leetcode.cn/problems/partition-equal-subset-sum/

分析:

本题属于01背包问题

从数组中选择一些数据,使其刚好符合某种带限制条件的和,就符合01背包问题的思路

01背包问题就是选择一些物品,实现不超过背包最大容量的最大价值

本题是选择一些数,判断能够实现最大和刚好等于sum/2的情况

还有一个是在分析状态转移方程时,最后一个位置选或者不选也可以用01问题

代码:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length;
        int sum = 0;
        for(int x : nums) sum += x;// 求和
        if(sum % 2 == 1) return false;// 特判
        int N = sum / 2;
        // 创建dp表
        boolean[][] dp = new boolean[n + 1][N + 1];
        dp[0][0] = true;// 初始化
        for(int i = 1; i <= nums.length; i++) {
            for(int j = 1; j <= sum / 2; j++) {
                dp[i][j] = (dp[i - 1][j]) 
                            || (j - nums[i - 1] >= 0 && dp[i - 1][j - nums[i - 1]]);
            }
        }
        // 返回值
        return dp[nums.length][sum / 2];
    }
}

空间优化后的代码:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length, sum = 0;
        for(int x : nums) sum += x;
        if(sum % 2 == 1) return false;
        int N = sum / 2;
        boolean[] dp = new boolean[N + 1];
        dp[0] = true;
        for(int i = 1; i <= n; i++) 
            for(int j = sum / 2; j >= nums[i - 1]; j--) 
                dp[j] = dp[j] || dp[j - nums[i - 1]];
        return dp[sum / 2];
    }
}

2.⽬标和

链接:

https://leetcode.cn/problems/target-sum/

分析:

题目要求是必须用到数组里面的所有数字进行拼接(可正可负),判断可以拼接为target的最大组合数

首先,因为要用到数组中所有的数字,所以可以先把数组总和sum求出,接着我们可以把sum拆分为两部分,一部分是拼接+的数字总和a,另一部分是拼接-的总和b(b是大于0的,这里仅仅只是数字的相加),则可以得出:

  • a + b == sum
  • a - b == target

将两式相加可得:

a == (sum + target) / 2

示意图:

那么本道题就可以转化为在数组中挑选若干个数,使其和等于a的最大组合数,这不就是01背包问题吗!,在一个集合内部挑选若干个物品,在满足某个限制的前提下,实现xxxx

说明:求出a之后还需要判断是否越界,主要有两种不符合条件的情况:

  1. a < 0,因为本题的target可以是负数,所以a可能是负数,但是数组中的数全是大于0的,根部无法凑出一个小于0的数
  2. (sum + target) / 2 != 0:当除不尽的时候就代表不存在这样的a,也就无法凑出target,返回0

接下来就是动态规划的思路:

算法系列--动态规划--背包问题(2)--01背包拓展题目(下)


目录
相关文章
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
65 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
120 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
85 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。

热门文章

最新文章