【Python】Python迭代器与生成器的区别(详细讲解)

简介: 【Python】Python迭代器与生成器的区别(详细讲解)


👉博__主👈:米码收割机

👉技__能👈:C++/Python语言

👉公众号👈:测试开发自动化【获取源码+商业合作】

👉荣__誉👈:阿里云博客专家博主、51CTO技术博主

👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。



在 Python 中,迭代器(Iterators)和生成器(Generators)都是用于处理可迭代对象的概念,但它们有一些关键的区别。让我们来看看它们的特点和区别:

1. 迭代器(Iterators)

  • 迭代器是一个实现了迭代协议的对象,可以通过内置函数iter()来创建。它主要用于遍历或访问集合(如列表、元组、集合、字典等)中的元素,以及处理大型数据集合时节省内存。
  • 迭代器的基本方法是__iter__()__next__()(在 Python 2 中是next())。__iter__()方法返回迭代器对象本身,并且__next__()方法返回下一个元素,如果没有更多元素则引发StopIteration异常。
  • 迭代器是惰性的,即每次只在需要时产生一个元素,不会提前将所有元素生成并保存在内存中。

假设我们有一个列表,我们想遍历该列表并计算其中所有元素的平方和。在这种情况下,我们可以使用迭代器来逐个获取列表中的元素并进行计算。

# 使用迭代器计算列表中元素的平方和
def square_sum(iterable):
    iterator = iter(iterable)
    result = 0
    try:
        while True:
            element = next(iterator)
            result += element ** 2
    except StopIteration:
        pass
    return result
my_list = [1, 2, 3, 4, 5]
total_square_sum = square_sum(my_list)
print(total_square_sum)  # 输出:55 (1 + 4 + 9 + 16 + 25)

运行结果:


2. 生成器(Generators)

  • 生成器是一种特殊类型的迭代器,使用函数和yield语句来定义。它允许在迭代过程中保存状态,从而使得函数可以在后续调用中继续执行,并返回生成的值,而不是将所有结果一次性返回。
  • 生成器的函数使用yield语句来产生值,而不是return语句。当函数中遇到yield时,会暂停执行并返回一个值给调用者,但函数的状态仍然保留,以便在下一次调用时从上次暂停的位置继续执行。
  • 生成器可以通过函数调用来使用,就像普通函数一样,但是当生成器函数被调用时,它不会立即执行,而是返回一个生成器对象,通过调用next()函数或使用for循环来逐步获取生成的值。
  • 生成器函数可以节省大量内存,因为它们一次只生成一个值,并且不会在内存中保存生成的所有元素。

使用生成器来实现同样的功能,在每次调用时生成一个元素的平方,并保留状态直到下一次调用。

# 使用生成器计算列表中元素的平方和
def square_generator(iterable):
    for element in iterable:
        yield element ** 2
my_list = [1, 2, 3, 4, 5]
squared_values = square_generator(my_list)
# 使用for循环获取生成器的值并计算平方和
total_square_sum = sum(squared_values)
print(total_square_sum)  # 输出:55 (1 + 4 + 9 + 16 + 25)

运行结果:


3. 总结:

这两个示例得出的结果是相同的,但实现方式有所不同。在第一个示例中,我们使用迭代器逐个获取列表中的元素,并且计算整个平方和之后才返回结果。而在第二个示例中,我们使用生成器逐步计算每个元素的平方,并且在生成器中保留了状态,从而实现了节省内存的效果。

使用迭代器时,我们一次获取并处理一个元素,而使用生成器时,我们按需生成并处理每个元素,保留了计算状态,从而能够节省内存,并且可以处理大量的数据集合。

迭代器是一种通用的抽象概念,而生成器是一种特殊类型的迭代器,使用函数和yield语句来实现。生成器在处理大量数据和需要保存状态的情况下非常有用,因为它们能够惰性地产生值并节省内存。相比之下,迭代器通常用于遍历普通的可迭代对象。无论是迭代器还是生成器,它们都是在处理大型数据集合和节省内存方面的有用工具。



相关文章
|
2月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
208 1
|
5月前
|
人工智能 数据安全/隐私保护 Python
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
|
5月前
|
数据采集 NoSQL 调度
当生成器遇上异步IO:Python并发编程的十大实战兵法
本文通过十大实战场景,详解Python中生成器与异步IO的高效结合。从协程演进、背压控制到分布式锁、性能剖析,全面展示如何利用asyncio与生成器构建高并发应用,助你掌握非阻塞编程核心技巧,提升I/O密集型程序性能。
184 0
|
2月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
180 4
|
8月前
|
开发者 Python
Python代码设计:使用生成器替代回调函数
本文探讨了在处理大文件时计算MD5值的实现方法,并展示了如何通过回调函数、生成器和类等方式输出进度。首先介绍了通过回调函数更新进度的方式,然后优化为使用生成器简化调用者代码,最后对比了两种方式的优缺点。虽然生成器使代码更简洁,但在异常处理上不如回调函数灵活。作者通过实例分析,帮助开发者根据需求选择合适的方式。
164 16
|
3月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
256 2
|
4月前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
230 0
|
3月前
|
大数据 数据处理 数据安全/隐私保护
Python3 迭代器与生成器详解:从入门到实践
简介:本文深入解析Python中处理数据序列的利器——迭代器与生成器。通过通俗语言与实战案例,讲解其核心原理、自定义实现及大数据处理中的高效应用。
177 0
|
5月前
|
存储 API 数据库
自动发短信的软件,批量自动群发短信,手机号电话号生成器【python框架】
这个短信群发系统包含以下核心功能: 随机手机号生成器(支持中国号码) 批量短信发送功能(使用Twilio API)
|
6月前
|
数据采集 搜索推荐 调度
当生成器遇上异步IO:Python并发编程的十大实战兵法
生成器与异步IO是Python并发编程中的两大利器,二者结合可解决诸多复杂问题。本文通过十个真实场景展示其强大功能:从优雅追踪日志文件、API调用流量整形,到实时数据流反压控制、大文件分片处理等,每个场景都体现了生成器按需生成数据与异步IO高效利用I/O的优势。两者配合不仅内存可控、响应及时,还能实现资源隔离与任务独立调度,为高并发系统提供优雅解决方案。这种组合如同乐高积木,虽单个模块简单,但组合后却能构建出复杂高效的系统。
154 0

推荐镜像

更多