白平衡相关内容,算法

简介: 色温: 讨论白平衡,就要从色温谈起,色温顾名思义就是色彩的温度,它指的是绝对黑体从绝对零度开始持续加热所呈现出来的颜色。温度升高,颜色开始从红、橙、黄、绿、蓝、靛、紫,逐渐变化。这些颜色的差异来自于不同波长光线的比例不同,色温越低,波长较长的光线比例大,红色成分就多。色温越高,波长较短的光线比例大,蓝色的成分就多。

色温:


       讨论白平衡,就要从色温谈起,色温顾名思义就是色彩的温度,它指的是绝对黑体从绝对零度开始持续加热所呈现出来的颜色。温度升高,颜色开始从红、橙、黄、绿、蓝、靛、紫,逐渐变化。这些颜色的差异来自于不同波长光线的比例不同,色温越低,波长较长的光线比例大,红色成分就多。色温越高,波长较短的光线比例大,蓝色的成分就多。


       白平衡的目的就是让物体从在不同光源下所呈现出来的颜色,恢复到物体的固有色,以达到减少色偏或者无色偏的效果 若图像中绿色较强,蓝色和红色较弱,则用了灰度世界算法后,绿色会适当减弱,蓝色和红色会适当加强,这样就使原本偏色严重的情况得到了缓解。


       该算法的优点是简单快捷,能应用于一般场景的处理,但是当图片颜色比较单一或者单一色块的面积较大时,灰度世界法不成立,处理结果会出现偏差。


        基于灰度世界假设为前提 (在一副色彩多样的图像中,最终所有颜色的平均统计值应该是一致的,也就是灰色的。)认为对于一副有大量色彩的场景,R,G,B分量的平均值趋于同一个灰度。算法大致可分为三步:


1.计算三个通道的平均灰度

2.计算三个通道的增益系数

3.原始值乘上增益系数

%%白平衡与色温紧密相关,不同色温光源下图像会呈现不同程度的偏色
%%由于人眼独特的适应性,在不同光照条件下观看物体时不会出现偏色,而就没这么先进了
%%蓝色光色温高,红色光色温低
clc;
clear all;
close all;
tic;
imgSrc = imread('E:\picture\03-work\02-imgProc\00-ISP\wb_sardmen-incorrect.jpg');
imgDst = imgSrc;
%%第一步,计算三个通道的平均灰度
imgR = imgSrc(:,:,1);
imgG = imgSrc(:,:,2);
imgB = imgSrc(:,:,3);
RAve = mean2(imgR);
GAve = mean2(imgG);
BAve = mean2(imgB);
aveGray = (RAve + GAve + BAve) / 3;
%%第二步,计算三个通道的增益系数
RCoef = aveGray / RAve;
GCoef = aveGray / GAve;
BCoef = aveGray / BAve;
%%第三步,使用增益系数来调整原始图像
RCorrection = RCoef * imgR;
GCorrection = GCoef * imgG;
BCorrection = BCoef * imgB;
imgDst(:,:,1) = RCorrection;
imgDst(:,:,2) = GCorrection;
imgDst(:,:,3) = BCorrection;
figure,subplot(1,2,1),imshow(imgSrc),title('original image');
subplot(1,2,2),imshow(imgDst),title('white balanced image');
toc;


   

       全反射理论:一幅图像中亮度最大的点就是白点, 即假设在 YCbCr 空间中Y值最大的点为白色, 以此来校正整幅图像。特点是只考虑色彩最亮的那部分, 跟上面的灰度世界理论正好相反, 在处理色彩偏单调的图像时效果好些, 但面对颜色丰富的图片时, 因为最亮的点不一定是白色的, 可能会出现偏色的情况


       完美反射算法基本原理:假设图像中最亮的点就是白点,并以此白点为参考对图像进行自动白平衡,最亮点定义为R+G+B的最大值。


       算法步骤:计算每个像素点的R+G+B之和并保存;按照值的大小计算出其前10%或其他比例的白色参考点阈值T;遍历图像计算其中R+G+B值大于T的所有点的R、G、B分量的累积和的平均值;将每个像素量化到[0,255]。


       完美反射算法优点是比灰度世界算法稍好,但是依赖比例值的选取,并且对亮度最亮区域不是白色的图像效果不佳。


             

%% 完美反射法
clear all
close all
clc
% 输入图像(存在颜色偏差的原始图像)
I=im2double(imread('Test.jpg'));
% 分离各个通道
R=I(:,:,1);     G=I(:,:,2);    B=I(:,:,3);
% 计算每个RGB灰度值之和
sumRGB=R+G+B;
% 将RGB值的大小进行排序
sumsort=sort(sumRGB(:)');
count=round(size(sumsort,2)*0.9);
T=sumsort(count);
index=sumRGB>T;
KR=max(R(:))/mean(R(index));
KG=max(G(:))/mean(G(index));
KB=max(B(:))/mean(B(index));
R1=R*KR;G1=G*KG;B1=B*KB;
out=cat(3,R1,G1,B1);
figure;imshow([I out]);


相关文章
|
算法 C++
OpenCV-白平衡(完美反射算法)
OpenCV-白平衡(完美反射算法)
481 0
|
算法 C++
OpenCV-白平衡(灰度世界算法)
OpenCV-白平衡(灰度世界算法)
428 0
|
算法 计算机视觉
OpenCV3 自动白平衡:灰度世界和完美反射算法
最近加入了一个无人机团队,任务是参加第六届国际无人机飞行器创新大奖赛(UAVGP)。由于需要跑视觉算法,团队买了块英伟达的TX2(壕...)。我做的方案是用色域分割,但是室外环境变化可能会比较大(冷暖,亮暗),所以需要用到白平衡算法让图片直方图保持正常。
4883 0
|
23天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
23天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
121 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
191 80
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。