Flink CDC产品常见问题之用superset连接starrocks报错如何解决

简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:Flink CDC里谁试过用superset连接starrocks的,报错要怎么办啊?

Flink CDC里谁试过用superset连接starrocks的,官网的方法好像不太行,报错要怎么办啊?



参考答案:

确保你在Superset的数据库连接设置中输入了正确的StarRocks主机地址、端口、数据库名、用户名和密码。

如果StarRocks集群仅允许特定的IP访问,确保Superset服务器的IP地址被允许。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599194?spm=a2c6h.12873639.article-detail.67.50e24378TRW91E



问题二:flink cdc oracle 这个报错有遇到过的吗?

flink cdc oracle 这个报错有遇到过的吗?



参考答案:

根据提供的信息,报错信息显示为 "ORA-00600: internal error code, arguments: [krvrdGetUID: 2], [18446744073709551614],[],[],[],[],[],[],[],[],[],[]},[],[],[],[],[]},[],[],[],[],[]},[],[]},[],[],[],[]},[],[],[]},[]},at oracle.jdbc.driver.T4CTTIoer11.processError(T4CTTIoer11.Java:509)"。这个错误是Oracle数据库的内部错误代码,具体的错误原因需要进一步分析。

一般来说,当遇到ORA-00600这样的内部错误时,可以尝试以下步骤进行排查:

  1. 检查数据库日志:查看Oracle数据库的alert日志或trace文件,这些文件通常包含有关错误的详细信息。
  2. 检查网络连接:确保Flink CDC与Oracle数据库之间的网络连接正常,没有中断或延迟。
  3. 检查数据库配置:确认Oracle数据库的配置是否正确,包括内存、参数设置等。
  4. 检查驱动程序和版本:确保使用的JDBC驱动程序与Oracle数据库版本兼容,并且是最新版本。
  5. 检查SQL语句:仔细检查执行的SQL语句,特别是涉及表名、列名、数据类型等方面的内容,确保没有语法错误或逻辑错误。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599193?spm=a2c6h.12873639.article-detail.68.50e24378TRW91E



问题三:Flink CDC里 任务重启由rocksdb状态后端改为hashmap行不行呢?

Flink CDC里 任务重启由rocksdb状态后端改为hashmap行不行呢?



参考答案:

Apache Flink 的任务在重启时更改状态后端,从 RocksDBStateBackend 更改为 HashMapStateBackend 并不是一个推荐的做法,且实际操作中可能不会按照预期工作。原因如下:1. 状态一致性:•当Flink作业使用RocksDBStateBackend持久化了状态,并在故障恢复时需要从检查点或者保存点进行恢复,这些状态是以RocksDB存储格式保存的。•如果直接切换到HashMapStateBackend,由于两种后端的数据结构和持久化方式完全不同,HashMapStateBackend无法直接读取RocksDB格式的状态数据。2. 内存限制:•RocksDB可以将大量状态数据存储在磁盘上,适合处理大规模状态数据的场景。•HashMapStateBackend则将状态数据完全保留在JVM堆内存中,如果状态数据量较大,可能会导致内存溢出(OOM)问题。3. 作业设计与配置:•通常在开发阶段确定了状态后端之后,在生产环境中不建议随意变更,因为这会改变整个作业的状态管理和容错机制。若确实需要更换状态后端,正确的做法是:•先停止当前使用RocksDBStateBackend的任务。•将之前保存的状态以兼容的方式迁移到新的状态后端所使用的格式。•配置新作业使用HashMapStateBackend,并设置好相应的内存限制策略。•启动新的作业,并从迁移后的状态进行恢复。但是请注意,对于大型或长时间运行的流处理作业,HashMapStateBackend由于其内存局限性,往往不适合用于处理大状态的情况。在生产环境部署时,应根据应用的实际需求选择合适的状态后端。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599192?spm=a2c6h.12873639.article-detail.69.50e24378TRW91E



问题四:有没有用flink cdc做过mysql整库的实时同步?

有没有大神用flink cdc做过mysql整库的实时同步?



参考答案:

有使用Flink CDC实现MySQL整库的实时同步的案例

Flink CDC(Change Data Capture)是Apache Flink中用于捕获数据库变化数据的一项技术,它能够实时地捕获和同步数据库中的数据变更。以下是一些关于使用Flink CDC进行MySQL整库实时同步的实践案例和相关信息:

  1. MysqlCDC项目:有一个基于Flink CDC的项目,通过datastream方式实现了MySQL之间的全量和增量同步。这个项目是用Java编写的,用户只需要配置好源数据库和目标数据库的信息,运行项目中的main函数,就能实现多库多表的同步。
  2. 数据同步到其他存储系统:在许多场景中,当数据库的数据发生变化时,可能需要将这些变化同步到其他存储中间件,如Kafka、Elasticsearch等。使用Flink CDC可以实现这种类型的数据同步,减少业务代码与数据同步操作的耦合,从而降低维护成本并减少代码冗余。
  3. 环境准备和配置:为了实现实时同步,需要准备相应的环境,包括安装JDK、Flink以及MySQL等。还需要创建用于同步的源数据库和目标数据库,并进行适当的配置以完成同步任务。
  4. 实时同步到Doris:有实践案例介绍了如何使用Flink CDC版本2.4将MySQL数据库实时同步到Doris数据库。这包括了环境的准备、Flink CDC的配置、数据同步流程以及需要注意的事项。

综上所述,Flink CDC确实可以用来做MySQL整库的实时同步,并且已经有相关的实践案例和项目。这些案例和项目展示了Flink CDC在数据同步方面的能力和实用性。在实施同步时,需要考虑到环境的配置、数据的一致性要求以及同步策略等多个方面,以确保同步过程的高效和可靠。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598971?spm=a2c6h.12873639.article-detail.70.50e24378TRW91E



问题五:flink CDC中,同步任务重并没有同步mysql某张表,如果未被同步的表结构变更了怎么办?

flink CDC中,同步任务重并没有同步mysql某张表,如果未被同步的表结构变更了,flinkCDC 同步任务也会报错。按理说应该不会,是不是可以做些设置呢?



参考答案:

3.0.1 修复了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598742?spm=a2c6h.12873639.article-detail.71.50e24378TRW91E

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
10月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
961 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
消息中间件 前端开发 Kafka
【Azure 事件中心】使用Apache Flink 连接 Event Hubs 出错 Kafka error: No resolvable bootstrap urls
【Azure 事件中心】使用Apache Flink 连接 Event Hubs 出错 Kafka error: No resolvable bootstrap urls
296 2
|
消息中间件 SQL Kafka
实时计算 Flink版产品使用问题之使用StarRocks作为Lookup Join的表是否合适
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
1186 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
存储 数据采集 OLAP
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
1412 8
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
|
SQL Java Apache
实时计算 Flink版操作报错合集之使用parquet时,怎么解决报错:无法访问到java.uti.Arrays$ArrayList类的私有字段
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
269 0
|
消息中间件 Java Kafka
【Azure 事件中心】开启 Apache Flink 制造者 Producer 示例代码中的日志输出 (连接 Azure Event Hub Kafka 终结点)
【Azure 事件中心】开启 Apache Flink 制造者 Producer 示例代码中的日志输出 (连接 Azure Event Hub Kafka 终结点)
194 0
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用问题之连接到MySQL的从库时遇到其他服务也连接到了从库,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
Kubernetes 关系型数据库 API
实时计算 Flink版产品使用问题之连接的PG表长时间无数据写入,WAL日志持续增长,该如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版