OpenAI Sora 关键技术详解:揭秘时空碎片 (Spacetime Patches) 技术

简介: 本文解析的重点即是 Sora 背后的核心技术 Spacetime Patches,作者认为该技术通过创新的时空数据建模方法,让 Sora 学会预测时空维度上事件和对象的变化、运动和互动,从而建立起视频世界的物理模型,生成极其逼真的视频。


编者按:近日,OpenAI 发布其首个视频生成模型 “Sora”,该模型生成的视频内容可以呈现出多个角色、特定动作以及复杂场景,为构建能够理解和模拟现实世界的人工智能模型奠定了基础。


本文解析的重点即是 Sora 背后的核心技术 Spacetime Patches,作者认为该技术通过创新的时空数据建模方法,让 Sora 学会预测时空维度上事件和对象的变化、运动和互动,从而建立起视频世界的物理模型,生成极其逼真的视频。

这确实是生成模型领域的里程碑,也是一个 AGI 的里程碑。编者相信,没准有一天,哆啦 A 梦的二次元口袋照相机也可能成为现实。


人工智能如何将静态图像转换为动态、逼真的视频?OpenAI 的 Sora 通过创新性地使用时空碎片技术(spacetime patches)给出了一个答案。

在快速发展的生成模型领域,OpenAI 的 Sora [1] 是一个重要的里程碑,有望重塑我们对视频生成的理解和认识。本文将解读 Sora 背后的技术 [2] 以期激发新一代模型在图像、视频和 3D 内容创建方面的潜力。

OpenAI 使用以下提示词生成生成了一段视频:A cat waking up its sleeping owner demanding breakfast. The owner tries to ignore the cat, but the cat tries new tactics and finally the owner pulls out a secret stash of treats from under the pillow to hold the cat off a little longer.  —— 通过 Sora 生成的视频内容几乎达到了无以伦比的逼真程度。由于 Sora 正在进行测试,完整模型尚未完全向公众发布。

01 Sora 的独特方法如何改变视频生成的方式

在生成模型(generative models)领域的发展过程中,我们见证了从生成式对抗网络(GAN)到自回归(auto-regressive)和扩散模型(diffusion models)等多种方法的演变,它们都有各自的优势和局限性。Sora 通过采用新的模型技术和凭借其高度灵活性带来了范式转变,能够处理多种多样的视频时长(duration)、宽高比(aspect ratio)和分辨率(resolution)。

Sora 结合了扩散原理(diffusion)和 transformer 架构,提出了 diffusion transformer model,并具有如下特性:

  • 文字到视频:这种功能我们应该已经见到过很多次了
  • 图像到视频:为静态图像赋予生命
  • 视频到视频:将视频的风格转换为其他样式
  • 修改视频时间:扩展和缩短视频
  • 创建无缝循环视频:创建看起来无限循环的平铺视频(译者注:在视频编辑领域,Tile(平铺)是一个专业术语,指的是将一个视频片段复制并拼接,重复排列形成一个新的视频画面的技术。)
  • 图像生成:虽然只是单帧静止画面,但是称得上一部 “单帧电影”(分辨率高达 2048 x 2048)
  • 生成任何分辨率的视频:从 1920 x 1080 到 1080 x 1920,应有尽有
  • 模拟虚拟世界: 像 Minecraft 和其他视频游戏
  • 创建视频: 最长 1 分钟,包含多个短视频

想象一下,你正在一个厨房里。像 Pika [3] 和 RunwayML [4] 这样的传统视频生成模型就像严格遵循食谱的厨师,他们能够制作美味佳肴(视频),但受限于他们所知的食谱(算法)。这些 “厨师” 可能专攻制作蛋糕(短视频)或意大利面(某类型视频),使用特定的 “食材”(数据格式)和 “烹调技术”(模型架构)。

相比之下,Sora 像是全能大厨,对食品风味的构成与变化了如指掌。Sora 不仅能遵循食谱,还持续创造新的菜式。 数据和模型架构的灵活性,让 Sora 能生产出一系列高质量的视频,堪比大师厨艺的多变与精湛。

02 探索 Sora 秘方的核心:Spacetime Patches 技术

Spacetime Patches 是 Sora 创新的核心,它建立在谷歌 DeepMind 早先对 NaViT [5] 和 ViT(Vision Transformers)的研究基础之上,其基础是一篇 2021 年的论文《An Image is Worth 16x16 Words [6]》。

“Vanilla” Vision Transformer 架构 —— 图片来源:Dosovitskiy 等,2021 [6]

在传统的 Vision Transformers 中,我们使用一系列图像 "patches" 来训练模型进行图像识别,而不是像训练 language transformers 那样使用单词来进行训练。通过 "patches",我们可以摆脱卷积神经网络对图像处理的束缚。

如何将帧 / 图像划分为 patches —— 图片来源:Dehghani 等,2023 [5]

然而,Vision transformers 受到图像训练数据的限制,这些数据的大小和长宽比都是固定的,这就限制了图像的质量,并需要对图像进行大量的预处理。

切割视频时态数据的可视化 —— 资料来源:kitasenjudesign [7]

通过将视频处理为 patches 序列,Sora 保持了原始的长宽比和分辨率,这与 NaViT 处理图像的方式类似。这种保留对于捕捉视觉数据的真实本质至关重要,可使模型从更准确的世界表征中学习,从而赋予 Sora 其近乎魔法的准确性。

Spacetime Patching 处理过程的可视化 —— 图片来源:OpenAI(Sora)

通过这种方法,Sora 可以高效地处理各种视觉数据,而无需调整大小或进行填充等预处理步骤。这种灵活性确保了每一条数据都有助于模型的理解,就像厨师使用各种配料来提升菜肴的风味一样。

通过 Spacetime Patching 技术详细而灵活地处理视频数据,为 Sora 拥有精确的物理模拟和三维一致性等复杂特性奠定了基础。 这些能力对于创建不仅看起来逼真,而且符合世界物理规则的视频至关重要,让我们看到了人工智能创建复杂、动态视觉内容的潜力。


(Sora 怎么使用?

目前 openai 官方还未开放 sora 灰度,不过根据文生图模型 DALL·E 案例,一定是先给 ChatGPT Plus 用户使用,需要注册或者升级可以看这个教程:  https://mp.weixin.qq.com/s/SvD2YIBvYmVif6UJ1qvwaw(一分钟完成升级)


03 喂养 Sora:多样化数据在训练中的作用

生成模型的表现与训练数据的质量和多样性密不可分。 现有的视频模型传统上是在更受限的数据集上训练的,时长较短,目标较窄。

Sora 的训练数据集广泛多样,包含不同长度、分辨率和长宽比的视频与图像。其重现 Minecraft 等数字世界的能力 [8],极有可能吸收了来自 Unity、Unreal 等系统的模拟镜头数据,以捕捉更丰富视角和风格的视频内容。这让 Sora 类似 GPT 语言模型,达到视频生成的 “全能” 境界。

丰富数据训练使 Sora 能够深刻理解复杂动力学,生成既多样又高质量的内容。 这种方法模仿了大语言模型在多样化文本上的训练方式,将类似理念应用于视觉数据,以获得通用能力。

使用可变 patches 的 NaVit vs. 传统的 Vision Transformers —— 图片来源:Dehghani 等,2023 [5]

正如 NaViT 模型通过将来自不同图像的多个 patches 打包到单个序列中,能够显著提高训练效率和性能一样,Sora 利用时空碎片(Spacetime Patching)实现了在视频生成场景中类似的生成效率。这种方法可以更有效地学习庞大的数据集,提高模型生成高保真视频的能力,同时与现有模型架构相比还可以显著降低所需的计算量。

04 让模拟的物理世界栩栩如生:Sora 对三维空间和视频连贯性的掌控

三维空间以及物体的运动和互动具有逻辑性和一致性是 Sora 演示中的一大亮点。通过对大量视频数据进行训练,而不对视频进行调整或预处理,Sora 可以学习对物理世界进行建模,而且其准确性令人印象深刻,因为它能够以原始形式消化训练数据。

它能生成数字世界和视频,在这些视频中,其中的物体和角色在三维空间中移动和互动,即使在它们被遮挡或离开画面时也能保持连贯性,令人信服。

05 展望未来:Sora 对生成模型的启示

Sora 为生成模型树立一种新的高标准。这种技术极有可能激发开源社区继续探索视觉生成领域的新边界,驱动新一代生成模型的发展,打破创造力和内容真实性的限制。

Sora 的征程才刚刚开始,正如 OpenAI 所说: “扩大视频生成模型的规模是建立物理世界通用模拟器的一条大有可为的道路。”

Sora 技术与最新的 AI 研究和实践应用的融合,预示着生成模型的光明前景。随着这些技术的持续演化,必将重新定义我们与数字内容的互动,使高保真、动态视频生成变得更加便捷和多样。

Thanks for reading!

END

参考资料

[1]https://openai.com/sora

[2]https://openai.com/research/video-generation-models-as-world-simulators

[3]https://pika.art/home

[4]https://runwayml.com/ai-tools/gen-2/

[5]https://arxiv.org/abs/2307.06304

[6]https://arxiv.org/abs/2010.11929

[7]https://twitter.com/kitasenjudesign/status/1489260985135157258

[8]https://techcrunch.com/2024/02/15/openais-sora-video-generating-model-can-render-video-games-too/

原文链接:

https://towardsdatascience.com/explaining-openai-soras-spacetime-patches-the-key-ingredient-e14e0703ec5b

相关文章
|
1月前
|
编解码 人工智能 自然语言处理
OpenAI Sora 怎么用:最新详细教程-新手小白必看 | Sora 如何使用?(202412月最新更新)
OpenAI的Sora模型现已正式开放使用,本文将详细介绍Sora的注册、使用方法及视频生成技巧。Sora能根据简洁文本生成长达60秒的高质量视频,具备远超以往模型的时间连续性和视觉效果。文章涵盖从零开始的准备工作、操作界面介绍、视频生成设置、编辑功能(如Re-cut、Remix、Blend、Loop)以及Storyboard故事板功能,帮助新手轻松上手世界顶级AI视频创作工具。此外,还解答了关于Sora的常见问题,包括订阅计划、视频类型和局限性等,适合全媒体创作者参考。
149 3
OpenAI Sora 怎么用:最新详细教程-新手小白必看 | Sora 如何使用?(202412月最新更新)
|
1月前
|
人工智能 编解码 机器人
OpenAI又出王炸了!正式推出超强AI视频模型Sora
OpenAI正式推出AI视频生成模型Sora,可根据文本提示生成逼真视频,面向美国及其他市场ChatGPT付费用户开放。Sora Turbo支持生成长达20秒的视频及多种变体,具备模拟物理世界的新兴能力,可创建多镜头视频,提供Remix和Storyboard等创新功能。
69 4
OpenAI又出王炸了!正式推出超强AI视频模型Sora
|
1月前
|
人工智能 自然语言处理 计算机视觉
OpenAI发布sCM提升50倍效率,扩散模型重大技术突破!
OpenAI近期发布了Simplified Consistency Models (sCM) 技术,这是在扩散模型基础上的重大改进,实现了50倍效率提升。sCM通过简化和稳定连续时间一致性模型的训练过程,解决了传统模型中的离散化误差和训练不稳定性问题,显著提升了生成模型的性能和效率。在多个数据集上的测试结果表明,sCM不仅超越了现有模型,还在生成模型的实际应用中展现了巨大潜力。论文地址:https://arxiv.org/abs/2410.11081
53 3
|
4月前
|
机器学习/深度学习 搜索推荐 算法
软件工程师,OpenAI Sora驾到,快来围观
软件工程师,OpenAI Sora驾到,快来围观
157 69
|
3月前
|
人工智能 缓存 搜索推荐
OPENAI DevDay 2024:推动AI技术的新边界
在今年的OPENAI DevDay活动中,尽管形式更为低调,但OpenAI依然带来了四项令人瞩目的技术创新,展示了其在推动人工智能开发者生态方面的持续努力,以及向更高效、用户友好的AI工具转型的决心。我将为大家详细介绍这些新产品
221 10
|
7月前
|
机器学习/深度学习 人工智能 算法
OpenAI发布全新AI视频模型Sora:引领视频创作新纪元
OpenAI发布全新AI视频模型Sora:引领视频创作新纪元
|
7月前
|
自然语言处理 Windows
ipxproxy静态住宅代理——助力OpenAI Sora的使用
​在OpenAI推出的Sora引领视频创作新时代的背景下,如何顺利注册并使用这一创新工具成为众多创作者关注的焦点。ipxproxy作为专业的代理服务商,提供了高效可靠的静态住宅代理IP解决方案,帮助用户顺利突破网络限制,轻松访问OpenAI Sora。
|
7月前
|
安全
IPXProxy静态住宅代理:注册OpenAI Sora的关键
​随着OpenAI发布的Sora引起了广泛关注,这款革命性的文本转视频生成工具给视频创作领域带来了质的飞跃。许多人都对Sora充满了好奇,希望能够注册并使用它来提升创作水平。然而,许多用户在注册过程中遇到了网络环境的问题,这时候静态住宅代理的优势就显现出来了。
|
8月前
|
存储 安全 机器人
【LLM】智能学生顾问构建技术学习(Lyrz SDK + OpenAI API )
【5月更文挑战第13天】智能学生顾问构建技术学习(Lyrz SDK + OpenAI API )
113 1
|
8月前
|
人工智能 安全
OpenAI拟携Sora进军好莱坞
OpenAI计划将AI视频生成工具Sora引入好莱坞,该工具能根据文本提示生成逼真视频,已引起业界关注。OpenAI与好莱坞影视公司及媒体高管会面,探讨Sora的合作潜力。Sora可能革新电影制作,提高效率,但也引发对传统创意工作者失业的担忧。面对机遇与挑战,OpenAI寻求与艺术家合作,平衡技术创新与行业影响。随着AI技术发展,电影制作将面临变革,需兼顾效率与工作者权益。
69 2
OpenAI拟携Sora进军好莱坞

热门文章

最新文章