flink问题之使用debezium-json format报错如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。

问题一:flink 1.11 es未定义pk的sink问题


根据文档[1]的描述,1.11的es sql connector如果在ddl里没有声明primary key,将会使用append模式sink数据,并使用es本身生成的id作为document_id。但是我在测试时发现,如果我的ddl里没有定义primary key,写入时没有正确生成document_id,反而是将index作为id生成了。导致只有最新的一条记录。下面是我的ddl定义: 不确定是我配置使用的方式不对,还是确实存在bug。。

CREATE TABLE ES6_SENSORDATA_OUTPUT ( event varchar, user_id varchar, distinct_id varchar, _date varchar, _event_time varchar, recv_time varchar, _browser_version varchar, path_name varchar, _search varchar, event_type varchar, _current_project varchar, message varchar, stack varchar, component_stack varchar, _screen_width varchar, _screen_height varchar ) WITH ( 'connector' = 'elasticsearch-6', 'hosts' = '<ES_YUNTU.SERVERS>', 'index' = 'flink_sensordata_target_event', 'document-type' = 'default', 'document-id.key-delimiter' = '$', 'sink.bulk-flush.interval' = '1000', 'failure-handler' = 'fail', 'format' = 'json' )

[1]https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/connectors/elasticsearch.html#key-handling


参考回答:

如果没有定义主键,ES connector 会把 _id设为null[1],这样ES的Java Client会将_id设为一个随机值[2].

所以应该不会出现您说的这种情况。您那里的ES有没有请求日志之类的,看一下Flink发过来的请求是什么样的。

[1] https://github.com/apache/flink/blob/f0eeaec530e001ab02cb889dfe217e25913660c4/flink-connectors/flink-connector-elasticsearch-base/src/main/java/org/apache/flink/streaming/connectors/elasticsearch/table/RowElasticsearchSinkFunction.java#L102

[2] https://github.com/elastic/elasticsearch/blob/977230a0ce89a55515dc6ef6452e9f059d9356a2/core/src/main/java/org/elasticsearch/action/index/IndexRequest.java#L509


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372256


问题二:单流的一条数据,需要先sink 至mysql,再sink至kafka,并保证两sink的原子性以及s


请问下,有没有大佬做过类似的事情?

另外,flink side out功能,可以将单流分成多流,但是不是分成多流后,但两条流sink的时候,是不是没法保证sink时候的时序?


参考回答:

你可以先用 map 再用 addSink,这样他们的调用被 chain 在一起,可以达到先写入 mysql ,再写入 kafka 的目的。

datastream.map(new MySQLSinkMapFunction()).addSink(new

FlinkKafkaProducer()).

也就是将 mysql sink 伪装成了一个 MapFunction,里面先做了 写 mysql 的动作,写成功后再将数据输出到下游。

另外,如果要在 SQL 中解决这个需求的话,会比较麻烦,因为标准语法中没有这么个语法支持这个功能。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372259


问题三:flink使用debezium-json format报错


log4j:WARN No appenders could be found for logger (org.apache.flink.table.module.ModuleManager). log4j:WARN Please initialize the log4j system properly. Exception in thread "main" org.apache.flink.table.api.TableException: Provided trait [BEFORE_AND_AFTER] can't satisfy required trait [ONLY_UPDATE_AFTER]. This is a bug in planner, please file an issue. Current node is TableSourceScan(table=[[default_catalog, default_database, ddd]], fields=[id, age]) at org.apache.flink.table.planner.plan.optimize.program.FlinkChangelogModeInferenceProgram$SatisfyUpdateKindTraitVisitor.$anonfun$visitChildren$2(FlinkChangelogModeInferenceProgram.scala:626) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:233) at scala.collection.Iterator.foreach(Iterator.scala:937) at scala.collection.Iterator.foreach$(Iterator.scala:937) at scala.collection.AbstractIterator.foreach(Iterator.scala:1425) at scala.collection.IterableLike.foreach(IterableLike.scala:70) at scala.collection.IterableLike.foreach$(IterableLike.scala:69) at scala.collection.AbstractIterable.foreach(Iterable.scala:54) at scala.collection.TraversableLike.map(TraversableLike.scala:233) at scala.collection.TraversableLike.map$(TraversableLike.scala:226) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.flink.table.planner.plan.optimize.program.FlinkChangelogModeInferenceProgram$SatisfyUpdateKindTraitVisitor.visitChildren(FlinkChangelogModeInferenceProgram.scala:614) at org.apache.flink.table.planner.plan.optimize.program.FlinkChangelogModeInferenceProgram$SatisfyUpdateKindTraitVisitor.$anonfun$visitSink$1(FlinkChangelogModeInferenceProgram.scala:690) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240)


参考回答:

这是 changgelog 里的一个bug[1], 在1.11.1和master上已经修复,1.11.1社区已经在准备中了。 [1] https://issues.apache.org/jira/browse/FLINK-18461 https://issues.apache.org/jira/browse/FLINK-18461


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372264


问题四:Flink es7 connector认证问题


我们生产环境的es7是有用户名密码认证的,使用如下代码启动后会报,这段代码调用了es rest client api,单独使用是没问题的,不过放到 flink 里就报错了 org.elasticsearch.client.ResponseException: method [HEAD], host [xxx], URI [/], status line [HTTP/1.1 401 Unauthorized] ParameterTool pt = ParameterTool.fromArgs(args); String confFile = pt.get("confFile"); pt = ParameterTool.fromPropertiesFile(new File(confFile)); provider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(pt.get("es.user.name"), pt.get("es.user.password")));

esSinkBuilder.setRestClientFactory( (RestClientBuilder restClientBuilder) -> restClientBuilder .setRequestConfigCallback(requestConfigBuilder -> requestConfigBuilder.setSocketTimeout(180000) .setConnectionRequestTimeout(10000) ) .setHttpClientConfigCallback(httpClientBuilder -> { httpClientBuilder.disableAuthCaching(); //禁用 preemptive 身份验证 return httpClientBuilder.setDefaultCredentialsProvider(provider); } ) );


参考回答:

请问您有检查过pt.get("es.user.name"),

pt.get("es.user.password")这两个参数读出来是否都是正确的


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372267


问题五:flink sql 侧输出


大佬们、我们这面主要基于blink sql完成转换计算,但是可能会有延迟数据,现在想把延迟数据通过侧输出保存下来,在table/sql

api中要怎么操作比较合理一点?或者有没有其他处理延迟数据的方式?


参考回答:

Flink SQL/Table 目前还不支持 side output。不过有一个实验性的功能可以处理延迟数据,

你可以给你的作业配上:

table.exec.emit.late-fire.enabled = true

table.exec.emit.late-fire.delay = 1min

同时 TableConfig#setIdleStateRetentionTime 需要配上,表示窗口状态允许保留多久,即 window allowLateness 。

具体可以看下 org.apache.flink.table.planner.plan.utils.WindowEmitStrategy 这个类。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372272

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
SQL Shell API
实时计算 Flink版操作报错合集之任务提交后出现 "cannot run program "/bin/bash": error=1, 不允许操作" ,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
实时计算 Flink版操作报错合集之任务提交后出现 "cannot run program "/bin/bash": error=1, 不允许操作" ,是什么原因
|
3月前
|
资源调度 监控 关系型数据库
实时计算 Flink版操作报错合集之处理大量Join时报错空指针异常,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
实时计算 Flink版操作报错合集之处理大量Join时报错空指针异常,是什么原因
|
3月前
|
SQL Java Apache
实时计算 Flink版操作报错合集之使用parquet时,怎么解决报错:无法访问到java.uti.Arrays$ArrayList类的私有字段
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
3月前
|
Oracle 关系型数据库 Java
实时计算 Flink版操作报错合集之遇到了关于MySqIValidator类缺失的错误,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
SQL 消息中间件 canal
Flink cdc自定义format格式数据源
变更数据捕获 (CDC) 已成为一种流行的模式,本文介绍如何通过自定义format来获取不同格式cdc数据源
Flink cdc自定义format格式数据源
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
811 7
阿里云实时计算Flink在多行业的应用和实践
|
4天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
469 8
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
3月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。

相关产品

  • 实时计算 Flink版