异步检索在 Elasticsearch 中的理论与实践

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 异步检索在 Elasticsearch 中的理论与实践

异步检索在 Elasticsearch 中的理论与实践

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/async-search.html#submit-async-search

引言

Elasticsearch 是一种强大的分布式搜索和分析引擎,它能够快速地存储、搜索和分析大量数据。在处理大规模数据时,性能和响应时间变得至关重要。为了提高搜索和查询操作的效率,Elasticsearch 支持异步检索。本文将深入探讨异步检索在 Elasticsearch 中的理论原理,展示如何在实践中使用它,并提供使用场景和注意事项。

什么是异步检索?

在传统的同步搜索中,当客户端发出一个查询请求后,它需要等待 Elasticsearch 返回所有匹配结果才能继续处理其他任务。而异步检索允许客户端发起一个查询请求后,不必等待搜索结果立即返回,而是可以继续执行其他操作。Elasticsearch 在后台处理这个查询请求,当查询完成后,客户端会得到一个响应。

异步检索的优点在于它能够显著提高搜索和查询操作的性能和响应时间,特别是在处理大量数据或复杂查询时。

添加测试数据

使用python3脚本完成,根据github修改而来

https://github.com/oliver006/elasticsearch-test-data

生成测试数据脚本见文章末尾

执行命令

python3 es_test_data.py --es_url=http://127.0.0.1:9200 --count=1000000

如何使用异步检索?

1. 创建异步搜索任务

在 Elasticsearch 中,使用异步检索需要创建一个异步搜索任务。你可以通过发送一个异步搜索请求来创建任务。以下是一个使用 Elasticsearch 的 REST API 发起异步搜索请求的示例:

POST /test_data/_async_search?size=0
{
  "sort": [
    { "last_updated": { "order": "asc" } }
  ],
  "aggs": {
    "sale_date": {
      "date_histogram": {
        "field": "last_updated",
        "calendar_interval": "1d"
      }
    }
  }
}

在上述示例中,我们向名为 test_data 的索引提交了一个异步搜索请求,该请求使用简单的匹配查询来查找包含特定值的文档。

相应内容如下,注意ID的值即可

如果看不到ID的值,再加一部分数据量再次检索即可

{
  "id" : "FjU0SDlRSFZ2UTdxZUpkaFdLSF9hOVEdZzBVS3hmd1FTWEc3VmpCc1gzZFZhdzo2NDI0Mzg=",
  "is_partial" : true,
  "is_running" : true,
  "start_time_in_millis" : 1690808656033,
  "expiration_time_in_millis" : 1691240656033,
  "response" : {
    "took" : 1001,
    "timed_out" : false,
    "terminated_early" : false,
    "num_reduce_phases" : 0,
    "_shards" : {
      "total" : 1,
      "successful" : 0,
      "skipped" : 0,
      "failed" : 0
    },
    "hits" : {
      "total" : {
        "value" : 0,
        "relation" : "gte"
      },
      "max_score" : null,
      "hits" : [ ]
    }
  }
}

2. 获取异步搜索结果

一旦创建了异步搜索任务,你可以轮询获取任务的结果。Elasticsearch 返回一个任务 ID(上一步返回的ID),你可以使用这个 ID 来检索结果。以下是获取异步搜索结果的示例:

GET /_async_search/<task_id>
GET /_async_search/FjU0SDlRSFZ2UTdxZUpkaFdLSF9hOVEdZzBVS3hmd1FTWEc3VmpCc1gzZFZhdzo2NDI0Mzg=

在上述示例中,我们使用 <task_id> 来获取异步搜索任务的状态。

3. 获取异步搜索的状态

获取异步搜索结果后,可以对结果进行处理和解析。通常,结果会以 JSON 格式返回,其中包含搜索的匹配文档、聚合信息等。仅仅是在url中加入status

GET /_async_search/status/FjU0SDlRSFZ2UTdxZUpkaFdLSF9hOVEdZzBVS3hmd1FTWEc3VmpCc1gzZFZhdzo2NDI0Mzg=

返回结果如下

{
  "id" : "FjU0SDlRSFZ2UTdxZUpkaFdLSF9hOVEdZzBVS3hmd1FTWEc3VmpCc1gzZFZhdzo2NDI0Mzg=",
  "is_running" : false,
  "is_partial" : false,
  "start_time_in_millis" : 1690808656033,
  "expiration_time_in_millis" : 1691240656033,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "completion_status" : 200
}

4. 删除异步检索

DELETE /_async_search/FjU0SDlRSFZ2UTdxZUpkaFdLSF9hOVEdZzBVS3hmd1FTWEc3VmpCc1gzZFZhdzo2NDI0Mzg=

使用场景

异步检索在以下场景中特别有用:

  1. 大数据量搜索: 当索引包含大量数据时,同步搜索可能会导致请求阻塞并增加响应时间。异步检索能够提高搜索性能,让客户端可以并发处理其他任务。
  2. 复杂查询: 复杂的搜索查询可能需要更长的处理时间。通过使用异步检索,可以避免客户端长时间等待,提高用户体验。
  3. 定时任务: 如果你需要定期执行一些查询,并将结果导出或进行其他操作,异步检索可以让你更加灵活地处理这些任务。

使用注意事项

虽然异步检索提供了很多好处,但在使用时也需要注意以下事项:

  1. 任务状态管理: 确保正确地管理异步搜索任务的状态。任务可能处于不同的状态,包括运行中、完成和失败。及时清理已经完成或失败的任务,避免资源浪费。
  2. 任务结果有效性: 确保处理异步搜索结果时,对结果进行有效性验证和解析。避免因错误处理结果而导致数据不一致或错误的分析。
  3. 资源限制: 异步检索仍然占用服务器资源,特别是在处理大量并发任务时。确保服务器资源足够以支持异步检索的需求。
  4. 超时和重试: 考虑到网络或其他故障可能导致异步搜索请求失败,需要合理设置超时时间并实现重试机制,以确保请求的可靠性。

结论

异步检索是 Elasticsearch 中一个强大且实用的特性,可以显著提高搜索和查询操作的性能,特别在处理大规模数据或复杂查询时。在使用异步检索时,注意合理管理任务状态、验证结果有效性,并注意资源限制和错误处理。合理地应用异步检索,能为我们的应用程序带来更高效的搜索和分析功能。

测试脚本

#!/usr/bin/python
import nest_asyncio
nest_asyncio.apply()
import json
import csv
import time
import logging
import random
import string
import uuid
import datetime
import tornado.gen
import tornado.httpclient
import tornado.ioloop
import tornado.options
try:
    xrange
    range = xrange
except NameError:
    pass
async_http_client = tornado.httpclient.AsyncHTTPClient()
headers = tornado.httputil.HTTPHeaders({"content-type": "application/json"})
id_counter = 0
upload_data_count = 0
_dict_data = None
def delete_index(idx_name):
    try:
        url = "%s/%s?refresh=true" % (tornado.options.options.es_url, idx_name)
        request = tornado.httpclient.HTTPRequest(url, headers=headers, method="DELETE", request_timeout=240, auth_username=tornado.options.options.username, auth_password=tornado.options.options.password, validate_cert=tornado.options.options.validate_cert)
        response = tornado.httpclient.HTTPClient().fetch(request)
        logging.info('Deleting index  "%s" done   %s' % (idx_name, response.body))
    except tornado.httpclient.HTTPError:
        pass
def create_index(idx_name):
    schema = {
        "settings": {
            "number_of_shards":   tornado.options.options.num_of_shards,
            "number_of_replicas": tornado.options.options.num_of_replicas
        },
        "refresh": True
    }
    body = json.dumps(schema)
    url = "%s/%s" % (tornado.options.options.es_url, idx_name)
    try:
        logging.info('Trying to create index %s' % (url))
        request = tornado.httpclient.HTTPRequest(url, headers=headers, method="PUT", body=body, request_timeout=240, auth_username=tornado.options.options.username, auth_password=tornado.options.options.password, validate_cert=tornado.options.options.validate_cert)
        response = tornado.httpclient.HTTPClient().fetch(request)
        logging.info('Creating index "%s" done   %s' % (idx_name, response.body))
    except tornado.httpclient.HTTPError:
        logging.info('Looks like the index exists already')
        pass
@tornado.gen.coroutine
def upload_batch(upload_data_txt):
    try:
        request = tornado.httpclient.HTTPRequest(tornado.options.options.es_url + "/_bulk",
                                                 method="POST",
                                                 body=upload_data_txt,
                                                 headers=headers,
                                                 request_timeout=tornado.options.options.http_upload_timeout,
                                                 auth_username=tornado.options.options.username, auth_password=tornado.options.options.password, validate_cert=tornado.options.options.validate_cert)
        response = yield async_http_client.fetch(request)
    except Exception as ex:
        logging.error("upload failed, error: %s" % ex)
        return
    result = json.loads(response.body.decode('utf-8'))
    res_txt = "OK" if not result['errors'] else "FAILED"
    took = int(result['took'])
    logging.info("Upload: %s - upload took: %5dms, total docs uploaded: %7d" % (res_txt, took, upload_data_count))
def get_data_for_format(format):
    split_f = format.split(":")
    if not split_f:
        return None, None
    field_name = split_f[0]
    field_type = split_f[1]
    return_val = ''
    if field_type == 'arr':
        return_val = []
        array_len_expr = split_f[2]
        if '-' in array_len_expr:
            (min,max) = array_len_expr.split('-')
            array_len = generate_count(int(min), int(max))
        else:
            array_len = int(array_len_expr)
        single_elem_format = field_name + ':' + format[len(field_name) + len(field_type) + len(array_len_expr) + 3 : ]
        for i in range(array_len):
            x = get_data_for_format(single_elem_format)
            return_val.append(x[1])
    elif field_type == "bool":
        return_val = random.choice([True, False])
    elif field_type == "str":
        min = 3 if len(split_f) < 3 else int(split_f[2])
        max = min + 7 if len(split_f) < 4 else int(split_f[3])
        length = generate_count(min, max)
        return_val = "".join([random.choice(string.ascii_letters + string.digits) for x in range(length)])
    elif field_type == "int":
        min = 0 if len(split_f) < 3 else int(split_f[2])
        max = min + 100000 if len(split_f) < 4 else int(split_f[3])
        return_val = generate_count(min, max)
    
    elif field_type == "ipv4":
        return_val = "{0}.{1}.{2}.{3}".format(generate_count(0, 245),generate_count(0, 245),generate_count(0, 245),generate_count(0, 245))
    elif field_type in ["ts", "tstxt"]:
        now = int(time.time())
        per_day = 24 * 60 * 60
        min = now - 30 * per_day if len(split_f) < 3 else int(split_f[2])
        max = now + 30 * per_day if len(split_f) < 4 else int(split_f[3])
        ts = generate_count(min, max)
        return_val = int(ts * 1000) if field_type == "ts" else datetime.datetime.fromtimestamp(ts).strftime("%Y-%m-%dT%H:%M:%S.000-0000")
    elif field_type == "words":
        min = 2 if len(split_f) < 3 else int(split_f[2])
        max = min + 8 if len(split_f) < 4 else int(split_f[3])
        count = generate_count(min, max)
        words = []
        for _ in range(count):
            word_len = random.randrange(3, 10)
            words.append("".join([random.choice(string.ascii_letters + string.digits) for x in range(word_len)]))
        return_val = " ".join(words)
    elif field_type == "dict":
        global _dict_data
        min = 2 if len(split_f) < 3 else int(split_f[2])
        max = min + 8 if len(split_f) < 4 else int(split_f[3])
        count = generate_count(min, max)
        return_val = " ".join([random.choice(_dict_data).strip() for _ in range(count)])
    elif field_type == "text":
        text = ["text1", "text2", "text3"] if len(split_f) < 3 else split_f[2].split("-")
        min = 1 if len(split_f) < 4 else int(split_f[3])
        max = min + 1 if len(split_f) < 5 else int(split_f[4])
        count = generate_count(min, max)
        words = []
        for _ in range(count):
            words.append(""+random.choice(text))
        return_val = " ".join(words)
    return field_name, return_val
def generate_count(min, max):
    if min == max:
        return max
    elif min > max:
        return random.randrange(max, min);
    else:
        return random.randrange(min, max);
def generate_random_doc(format):
    global id_counter
    res = {}
    for f in format:
        f_key, f_val = get_data_for_format(f)
        if f_key:
            res[f_key] = f_val
    if not tornado.options.options.id_type:
        return res
    if tornado.options.options.id_type == 'int':
        res['_id'] = id_counter
        id_counter += 1
    elif tornado.options.options.id_type == 'uuid4':
        res['_id'] = str(uuid.uuid4())
    return res
def set_index_refresh(val):
    params = {"index": {"refresh_interval": val}}
    body = json.dumps(params)
    url = "%s/%s/_settings" % (tornado.options.options.es_url, tornado.options.options.index_name)
    try:
        request = tornado.httpclient.HTTPRequest(url, headers=headers, method="PUT", body=body, request_timeout=240, auth_username=tornado.options.options.username, auth_password=tornado.options.options.password, validate_cert=tornado.options.options.validate_cert)
        http_client = tornado.httpclient.HTTPClient()
        http_client.fetch(request)
        logging.info('Set index refresh to %s' % val)
    except Exception as ex:
        logging.exception(ex)
def csv_file_to_json(csvFilePath):
    data = []
    # Open a csv reader called DictReader
    with open(csvFilePath, encoding='utf-8') as csvf:
        csvReader = csv.DictReader(csvf)
        for rows in csvReader:
            data.append(rows)
    return json.dumps(data)
@tornado.gen.coroutine
def generate_test_data():
    global upload_data_count
    if tornado.options.options.force_init_index:
        delete_index(tornado.options.options.index_name)
    create_index(tornado.options.options.index_name)
    # todo: query what refresh is set to, then restore later
    if tornado.options.options.set_refresh:
        set_index_refresh("-1")
    if tornado.options.options.out_file:
        out_file = open(tornado.options.options.out_file, "w")
    else:
        out_file = None
    if tornado.options.options.dict_file:
        global _dict_data
        with open(tornado.options.options.dict_file, 'r') as f:
            _dict_data = f.readlines()
        logging.info("Loaded %d words from the %s" % (len(_dict_data), tornado.options.options.dict_file))
    format = tornado.options.options.format.split(',')
    if not format:
        logging.error('invalid format')
        exit(1)
    ts_start = int(time.time())
    upload_data_txt = ""
    if tornado.options.options.data_file:
        json_array = ""
        if tornado.options.options.data_file.endswith(".csv"):
            json_array = json.loads(csv_file_to_json(tornado.options.options.data_file))
        else:
            with open(tornado.options.options.data_file, 'r') as f:
                json_array = json.load(f)
            logging.info("Loaded documents from the %s", tornado.options.options.data_file)
        for item in json_array:
            cmd = {'index': {'_index': tornado.options.options.index_name}}
                             # '_type': tornado.options.options.index_type}}
            if '_id' in item:
                cmd['index']['_id'] = item['_id']
            upload_data_txt += json.dumps(cmd) + "\n"
            upload_data_txt += json.dumps(item) + "\n"
        if upload_data_txt:
            yield upload_batch(upload_data_txt)
    else:
        logging.info("Generating %d docs, upload batch size is %d" % (tornado.options.options.count,
                                                                      tornado.options.options.batch_size))
        for num in range(0, tornado.options.options.count):
            item = generate_random_doc(format)
            if out_file:
                out_file.write("%s\n" % json.dumps(item))
            cmd = {'index': {'_index': tornado.options.options.index_name}}
                             # '_type': tornado.options.options.index_type}}
            if '_id' in item:
                cmd['index']['_id'] = item['_id']
            upload_data_txt += json.dumps(cmd) + "\n"
            upload_data_txt += json.dumps(item) + "\n"
            upload_data_count += 1
            if upload_data_count % tornado.options.options.batch_size == 0:
                yield upload_batch(upload_data_txt)
                upload_data_txt = ""
        # upload remaining items in `upload_data_txt`
        if upload_data_txt:
            yield upload_batch(upload_data_txt)
    if tornado.options.options.set_refresh:
        set_index_refresh("1s")
    if out_file:
        out_file.close()
    took_secs = int(time.time() - ts_start)
    logging.info("Done - total docs uploaded: %d, took %d seconds" % (tornado.options.options.count, took_secs))
if __name__ == '__main__':
    tornado.options.define("es_url", type=str, default='http://localhost:9200', help="URL of your Elasticsearch node")
    tornado.options.define("index_name", type=str, default='test_data', help="Name of the index to store your messages")
    tornado.options.define("index_type", type=str, default='test_type', help="Type")
    tornado.options.define("batch_size", type=int, default=1000, help="Elasticsearch bulk index batch size")
    tornado.options.define("num_of_shards", type=int, default=2, help="Number of shards for ES index")
    tornado.options.define("http_upload_timeout", type=int, default=3, help="Timeout in seconds when uploading data")
    tornado.options.define("count", type=int, default=100000, help="Number of docs to generate")
    tornado.options.define("format", type=str, default='name:str,age:int,last_updated:ts', help="message format")
    tornado.options.define("num_of_replicas", type=int, default=0, help="Number of replicas for ES index")
    tornado.options.define("force_init_index", type=bool, default=False, help="Force deleting and re-initializing the Elasticsearch index")
    tornado.options.define("set_refresh", type=bool, default=False, help="Set refresh rate to -1 before starting the upload")
    tornado.options.define("out_file", type=str, default=False, help="If set, write test data to out_file as well.")
    tornado.options.define("id_type", type=str, default=None, help="Type of 'id' to use for the docs, valid settings are int and uuid4, None is default")
    tornado.options.define("dict_file", type=str, default=None, help="Name of dictionary file to use")
    tornado.options.define("data_file", type=str, default=None, help="Name of the documents file to use")
    tornado.options.define("username", type=str, default=None, help="Username for elasticsearch")
    tornado.options.define("password", type=str, default=None, help="Password for elasticsearch")
    tornado.options.define("validate_cert", type=bool, default=True, help="SSL validate_cert for requests. Use false for self-signed certificates.")
    tornado.options.parse_command_line()
    tornado.ioloop.IOLoop.instance().run_sync(generate_test_data)


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
2月前
|
存储 关系型数据库 MySQL
浅谈Elasticsearch的入门与实践
本文主要围绕ES核心特性:分布式存储特性和分析检索能力,介绍了概念、原理与实践案例,希望让读者快速理解ES的核心特性与应用场景。
|
3月前
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
3月前
|
存储 API 数据库
检索服务elasticsearch索引(Index)
【8月更文挑战第23天】
63 6
|
3月前
|
存储 负载均衡 监控
检索服务elasticsearch节点(Node)
【8月更文挑战第23天】
55 5
|
3月前
|
存储 监控 负载均衡
检索服务elasticsearch集群(Cluster)
【8月更文挑战第23天】
63 3
|
3月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
19112 21
|
1月前
|
消息中间件 监控 关系型数据库
MySQL数据实时同步到Elasticsearch:技术深度解析与实践分享
在当今的数据驱动时代,实时数据同步成为许多应用系统的核心需求之一。MySQL作为关系型数据库的代表,以其强大的事务处理能力和数据完整性保障,广泛应用于各种业务场景中。然而,随着数据量的增长和查询复杂度的提升,单一依赖MySQL进行高效的数据检索和分析变得日益困难。这时,Elasticsearch(简称ES)以其卓越的搜索性能、灵活的数据模式以及强大的可扩展性,成为处理复杂查询需求的理想选择。本文将深入探讨MySQL数据实时同步到Elasticsearch的技术实现与最佳实践。
67 0
|
2月前
|
存储 自然语言处理 关系型数据库
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
聚合、补全、RabbitMQ消息同步、集群、脑裂问题、集群分布式存储、黑马旅游实现过滤和搜索补全功能
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
|
3月前
|
网络协议 Java API
SpringBoot整合Elasticsearch-Rest-Client、测试保存、复杂检索
这篇文章介绍了如何在SpringBoot中整合Elasticsearch-Rest-Client,并提供了保存数据和进行复杂检索的测试示例。
SpringBoot整合Elasticsearch-Rest-Client、测试保存、复杂检索
|
3月前
|
SQL 存储 自然语言处理
检索服务elasticsearch全文搜索
【8月更文挑战第22天】
53 3

热门文章

最新文章