【大模型】大语言模型前沿技术系列讲座-学习笔记1:人工智能发展史

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 【大模型】大语言模型前沿技术系列讲座-学习笔记1:人工智能发展史

最近参加了深蓝学院举办的 《大型语言模型前沿技术系列分享》,该系列分享以大模型(LLM)为背景,以科普、启发为目的,从最基本的Transformer开始讲起,逐步涉及一些更高阶更深入的课题,涵盖大模型基础、大模型对齐、大模型推理和大模型应用等内容。

系列讲座的内容由浅入深,讲解非常细致,没有任何水分,很适合我这种NLP刚入门的小白,听了这些讲座之后感觉收获满满👍👍👍

8.26 讲座安排(实际时长17:30-21:30)

本篇博客记录第一个讲座:《人工智能发展史和ChatGPT初探》

1. 人工智能发展史

人工智能发展不是一帆风顺的。在早期,计算机视觉领域的发展是领先的,一个重要原因是斯坦福大学公开了lmageNet数据集,基于这个超大的数据集,研究人员提出了不同的模型,一个典型代表就是AlexNet.

相比于计算机视觉,自然语言处理领域的发展稍微滞后,这是由于处理对象(语言/文本)的特殊性,没有特定规律可循,研究人员针对此提出了RNN、LSTM、GRU等多种模型,但遇到了难以处理长文本,同时不利于并行训练的问题。

NLP的兴起 ⭐️

直到2017年Google提出了Transformer架构,并引入了自注意力机制,NLP的研究才进入了一个新的阶段。由于训练时间缩短,出现不少预训练模型,比如Bert和GPT,两者都是基于Transformer架构的,具体而言,Bert利用了Transformer的Encoder部分,GPT利用了Transformer的Decoder部分。

Bert采用了 双向 transformer的结构,它能看到前后的信息,而GPT采用了 单向 transformer的结构,它只能看到前面的信息。

由于结构上的区别,二者的应用也有所不同,Bert侧重于自然语言理解任务,而GPT更适用于自然语言生成任务。

原作者出现了!将会在后面的讲座分享!

多模态的出现 ⭐️

多模态-数据模态更为多元,包含图像、视频和文本等。

特征工程 > 深度学习(避免人为因素的干扰,但是需要大量的训练数据) > 预训练(大量数据预训练+少量数据微调) > 大模型

2. ChatGPT初探

基础技术—语言建模(Language Modeling)

用概率来度量一句话或者句子出现的概率(判断是人说的话的概率)

  • 符合特定语言规则或约定俗成的使用习惯的句子的概率更大
  • 概率分布跟语种相关

例如:P(我很喜欢吃苹果) > P(我吃苹果很喜欢),即句子“我很喜欢吃苹果”的出现概率比句子“我吃苹果很喜欢”的出现概率大。

预训练的目标即是最大化训练数据中所包含的所有句子的概率。基于链式我们可以把句子的概率拆成每个词的概率,然后把每个词的概率相乘即可。

相比于监督学习,自监督学习无需收集数据的标签。

GPT采用自回归,例如:输入“我很喜欢”,预测“吃苹果”;

而Bert属于掩码预训练模型,例如:去掉“吃”这个词,然后预测缺失的“吃”这个词。

GPT只能看到过去的信息,Bert可以看到全部的信息。

GPT的开发经过了多次迭代,参数量越来越庞大。

加入指令微调可以使模型与用户需求对齐。

指令微调的步骤:

1️⃣ 收集示例数据(人工完成),进行有监督的微调,形成基础模型

2️⃣ 为了让模型生成更符合人类偏好,对模型输出进行排序,训练奖励模型

3️⃣ 基于奖励模型,利用强化学习对基础模型进行微调

推理能力的提升

提示工程 ⭐️

提示工程(Prompting Engineering)定义:旨在引导和指导人工智能语言模型生成特定类型的输出。其通过设计和调整模型输入中的提示(prompt),以影响模型的行为和生成结果。提示工程的目标是通过精心构造的提示,引导模型更好地理解用户意图,并生成与之一致的回复,从而提高模型的可用性和准确性,使其更适应特定的应用场景和任务。提示工程是一个迭代的过程,需要进行实验和调整,以找到最佳的提示策略,可能涉及尝试不同的提示形式、修改关键词或短语的位置、添加额外的指令或约束条件等。通过不断改进和优化提示工程,可以改善语言模型的表现并满足特定需求。因此,提示工程在语言模型应用中具有重要意义。

两个常用技巧:In-Context LearningChain-of-Thought

In-Context Learning 提供一些示例。

比如给出一些评论以及态度,然后再给出一条评论时,可以根据示例预测态度。

Chain-of-Thought 清晰展现模型推理的中间过程。

比如对于鸡兔同笼问题,分步计算比直接计算的准确度更高。

GPT-3 & ChatGPT & GPT-4 已经展现出一定程度的智能,那智能从何而来?

智能来源 ⭐️

解释1:压缩

预训练的过程就是训练一个数据压缩器来对大量数据进行压缩,模型则学习一系列的压缩规则。在理想情况下,模型是一个无损的压缩器,对于新的数据进行压缩也是无损的,则说明这个模型具有较好的 泛化能力,即具有智能。

解释2:规模容量

解释3:预测/逻辑推理

总结 ⭐️

  • 通过自监督学习在大量无标签数据上进行预训练,训练目标为最大化下一个单词出现的概率;
  • 通过增大模型的参数量和训练数据量来提升基础模型的基本能力;
  • 融入代码数据进行预训练提升基础模型的推理能力;
  • 通过指令微调让基础模型与用户的需求对齐;
  • 基于人类反馈的强化学习(RLHF)则进一步让模型生成更加安全可靠的内容;
  • 大模型已经具备一定程度的智能。

注意事项:

  • 缺乏实时信息;
  • 缺乏常识推理;
  • 对偏见和歧视的反映;
  • 容易出现幻觉(hallucination),不可靠;
  • 缺乏判断力,可能给出不合适或不道德的建议。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术介绍
【10月更文挑战第14天】 人工智能技术介绍
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
318 33
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
118 14
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
85 7
|
3月前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
157 1
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
313 6
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践