Qwen-VL怎么用自己的数据集微调

简介: Qwen-VL怎么用自己的数据集微调

Qwen-VL是一个基于PyTorch的视觉语言模型,如果你想用自己的数据集对Qwen-VL进行微调并遇到多卡训练时的显存爆炸问题,以下是一些可能的解决方案:

  1. 减少批次大小(Batch Size)

    • 批次大小是影响显存使用的主要因素之一。减小批次大小可以降低每一步训练所需的显存。
  2. 使用混合精度训练(Mixed Precision Training)

    • 使用半精度(FP16)代替全精度(FP32)可以显著减少显存使用和提高计算效率。PyTorch提供了torch.cuda.amp模块来支持混合精度训练。
  3. 梯度累积(Gradient Accumulation)

    • 梯度累积是一种技术,通过在多个小批次上计算梯度并累加,然后在一个大批次的步长下更新权重。这样可以在保持相同的总体学习进度的同时,使用较小的批次大小,从而降低显存需求。
  4. 模型并行化(Model Parallelism)

    • 如果模型太大无法适应单个GPU的显存,可以考虑将模型分布在多个GPU上。PyTorch提供了nn.DataParallelnn.parallel.DistributedDataParallel等工具来进行模型并行化。
  5. 优化数据加载和预处理

    • 确保你的数据加载和预处理代码高效且不会占用过多显存。例如,避免在GPU上加载整个数据集,而是在需要时分批加载。
  6. 清理不需要的张量

    • 在训练过程中,确保及时清理不再使用的张量以释放显存。可以使用torch.cuda.empty_cache()来尝试释放未被使用的显存。
  7. 调整模型结构或剪枝

    • 如果可能,尝试简化模型结构或者使用模型剪枝技术来减少模型的参数数量和显存占用。
  8. 使用更大的GPU或者分布式训练

    • 如果上述方法都不能解决问题,可能需要考虑使用更大显存的GPU,或者在多台机器上进行分布式训练。

在实施这些解决方案时,需要注意调整超参数并监控显存使用情况,以找到最佳的平衡点。同时,也要确保你的代码正确地处理了多卡训练的情况,例如正确地同步梯度和状态。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
2月前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
2003 2
|
4月前
|
XML JSON 数据库
大模型不听话?试试提示词微调
想象一下,你向大型语言模型抛出问题,满心期待精准回答,得到的却是答非所问,是不是让人抓狂?在复杂分类场景下,这种“大模型不听话”的情况更是常见。
308 9
|
3月前
|
人工智能 自然语言处理 测试技术
有没有可能不微调也能让大模型准确完成指定任务?(少样本学习)
对于我这种正在从0到1构建AI产品的一人公司来说,Few Shots学习的最大价值在于:用最少的资源获得最大的效果。我不需要大量的标注数据,不需要复杂的模型训练,只需要精心设计几个示例,就能让大模型快速理解我的业务场景。
305 43
|
2月前
|
存储 数据采集 自然语言处理
56_大模型微调:全参数与参数高效方法对比
随着大型语言模型(LLM)规模的不断增长,从数百亿到数千亿参数,传统的全参数微调方法面临着计算资源消耗巨大、训练效率低下等挑战。2025年,大模型微调技术已经从早期的全参数微调发展到如今以LoRA、QLoRA为代表的参数高效微调方法,以及多种技术融合的复杂策略。本文将深入对比全参数微调和参数高效微调的技术原理、适用场景、性能表现和工程实践,为研究者和工程师提供全面的技术参考。
|
2月前
|
机器学习/深度学习 存储 人工智能
大模型微调:从理论到实践的全面指南
🌟蒋星熠Jaxonic:AI探索者,专注大模型微调技术。从LoRA到RLHF,实践医疗、法律等垂直领域模型优化,分享深度学习的科学与艺术,共赴二进制星河的极客征程。
大模型微调:从理论到实践的全面指南
|
3月前
|
机器学习/深度学习 数据采集 算法
大模型微调技术综述与详细案例解读
本文是一篇理论与实践结合的综述文章,综合性全面介绍大模型微调技术。本文先介绍大模型训练的两类场景:预训练和后训练,了解业界常见的模型训练方法。在后训练介绍内容中,引出模型微调(模型微调是属于后训练的一种)。然后,通过介绍业界常见的模型微调方法,以及通过模型微调实操案例的参数优化、微调过程介绍、微调日志解读,让读者对模型微调有更加直观的了解。最后,我们详细探讨数据并行训练DDP与模型并行训练MP两类模型并行训练技术,讨论在实际项目中如何选择两类并行训练技术。
|
5月前
|
机器学习/深度学习 数据采集 人工智能
微调之后还能做什么?大模型后训练全链路技术解析
本文探讨了后训练的重要性、方法以及最新进展。文章将包含理论分析与实际操作指南,适合希望深入了解并应用这些技术的开发者。
1268 18
微调之后还能做什么?大模型后训练全链路技术解析

热门文章

最新文章