深度学习及CNN、RNN、GAN等神经网络简介(图文解释 超详细)

简介: 深度学习及CNN、RNN、GAN等神经网络简介(图文解释 超详细)

深度学习概述

理论上来说,参数越多的模型复杂度越高、容量越大,这意味着它能完成更复杂的学习任务。但一般情形下,复杂模型的训练效率低,易陷入过拟合。随着云计算、大数据时代的到来,计算能力的大幅提高可以缓解训练的低效性,训练数据的大幅增加可以降低过拟合风险。因此,以深度学习(Deep Learning,DL)为代表的复杂模型受到了关注


深度学习是机器学习(Machine Learning,ML)领域中一个新的研究方向。它使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法


(1)基于卷积运算的神经网络系统,即卷积神经网络(Convolutional Neural Network,CNN)

(2)基于多层神经元的自编码神经网络,包括自编码(Auto Encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)

(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)


通过多层处理,逐渐将底层的特征表示转化为高层特征表示,用简单模型即可完成复杂的分类等学习任务,由此可将深度学习理解为进行特征学习或表示学习。


以往在机器学习用于现实任务时,描述样本的特征通常需要人类专家设计,称为特征工程,众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好的特征也并非易事,特征学习则通过机器学习技术自身产生好特征,这使机器学习向全自动数据分享又前进了一步


常用的深度学习算法


常见的深度学习算法主要包括卷积神经网络、循环神经网络和生成对抗神经网络(Generative Adversarial Network,GAN)等。这些算法是深度学习的基础算法,在各种深度学习相关系统中均有不同程度的应用


1. 卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是第一个被成功训练的多层神经网络结构,具有较强的容错、自学习及并行处理能力。CNN最初是为识别二维图像形状而设计的多层感知器,局部联结和权值共享网络结构类似于生物神经网络,降低神经网络模型的复杂度,减少权值数量,使网络对于输入具备一定的不变性。经典的LeNet-5卷积神经网络结构图如图9-7所示

经典的LeNet-5卷积神经网络包括了输入层、卷积层、池化层、全连接层和输出层

(1)输入层

输入数据结构可以是多维的

(2)卷积层

卷积层使用卷积核提取特征,在卷积层中需要理解局部感受野和共享权值

(3)池化层

池化层是将卷积得到的特征映射图进行稀疏处理,减少数据量

(4)全连接层

在网络的末端对提取后的特征进行恢复,重新拟合,减少因为特征提取而造成的特征丢失

(5)输出层

输出层用于将最终的结果输出,针对不同的问题,输出层的结构也不相同


2. 循环神经网络


循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有结点(循环单元)按链式连接的递归神经网络(Recursive Neural Network)。之所以是“循环”,是因为其中隐含层结点的输出不仅取决于当前输入值,还与上一次的输入相关,即结点的输出可以指向自身,进行循环递归运算,在处理时间序列相关的场景时效果明显,在分析语音、视频、天气预报、股票走势预测等方面具有突出优势


3. 生成对抗网络


生成式对抗网络(Generative Adversarial Networks,GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。它解决的问题是从现有样本中学习并创建出新的样本,按照人类对事物的学习过程,逐渐总结规律,而并非使用大量数据训练,所以在新的任务处理中,只需要少量的标记样本就可以训练出高效的分类器


GAN网络模型通过生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。生成模型是给定某种隐含信息,随机产生观测数据,判别模型的主要任务是对样本进行区分,首先训练区分网络,从而提高模型的真假辨识能力,然后训练生成网络,提高其欺骗能力,生成接近于真实的训练样本,两种网络之间形成对抗关系,都极力优化自己的性能,直到达到一种动态平衡状态


总结


神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能模拟生物神经系统会真实世界物体所作出的交互反应 。在机器学习中谈论神经网络时一般指的是“神经网络学习

感知机感知器的概念类似于大脑基本处理单元神经元的工作原理。感知器具有许多输入(通常称为特征),这些输入被馈送到产生一个二元输出的线性单元中。因此,感知器可用于解决二元分类问题,其中样本将被识别为属于预定义的两个类之一

BP算法基于梯度下降策略,以目标的负梯度方向对网络参数进行调整。现实任务中使用神经网络时,大多是使用BP算法进行训练。BP算法不仅可以用于多层前馈神经网络,还可以用于其他类型的神经网络。通常所说的BP网络指利用BP算法训练的多层前馈神经网络

深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等

卷积神经网络是针对二维数据设计的一种模拟“局部感受野”的局部连接的神经网络结构。它引入卷积运算实现局部连接和权值共享的特征提取,引入池化操作实现低功耗计算和高级特征提取。网络构造通过多次卷积和池化过程形成深度网络,网络的训练含有“权共享”和“稀疏”的特点,学习过程类似于BP算法

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
162 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
125 10
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
115 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1天前
|
机器学习/深度学习 自然语言处理 监控
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
|
1天前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
15 6
|
6天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
69 40

热门文章

最新文章