【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)

一、相关基本概念

文件系统。文件系统是操作系统提供的用于解决“如何在磁盘上组织文件”的一系列方法和数据结构。

分布式文件系统。分布式文件系统是指利用多台计算机协同作用解决单台计算机所不能解决的存储问题的文件系统。如单机负载高、数据不安全等问题。

HDFS。英文全称为Hadoop Distributed File System,是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,它是基于流式数据访问和处理超大文件的需求而开发的分布式文件系统,可以运行于廉价的商用服务器上。 HDFS 源于谷歌公司在2003年10月份发表的GFS(Google File System) 论文

二、HDFS存储架构

HDFS采用主从架构(Master/Slave架构)

HDFS集群是由一个NameNode和多个的 DataNode组成。

HDFS集群是由一个NameNode和多个的 DataNode组成

1:Namenode

NameNode是HDFS集群的主服务器,通常称为名称节点或者主节点。一旦NameNode关闭,就无法访问Hadoop集群。NameNode主要以元数据的形式进行管理和存储,用于维护文件系统名称并管理客户端对文件的访问;NameNode记录对文件系统名称空间或其属性的任何更改操作;HDFS负责整个数据集群的管理,并且在配置文件中可以设置备份数量,这些信息都由NameNode存储。

2:Datanode

DataNode是HDFS集群中的从服务器,通常称为数据节点。文件系统存储文件的方式是将文件切分成多个数据块,这些数据块实际上是存储在DataNode节点中的,因此DataNode机器需要配置大量磁盘空间。它与NameNode保持不断的通信,DataNode在客户端或者NameNode的调度下,存储并检索数据块,对数据块进行创建、删除等操作,并且定期向NameNode发送所存储的数据块列表。

三、HDFS写入流程

1)Hadoop客户端和NameNode通信请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

2)NameNode返回信息给hadoop客户端是否可以上传。

3)Hadoop客户端会先对文件进行切分,比如:一个block块大小为128M,如果上传文件300M大小,文件会被切分成3个块,两个128M、一个44M,并向NameNode发上传请求。

4)NameNode返回DataNode的服务器信息给hadoop客户端。

5)hadoop客户端请求一台DataNode上传数据(本质上是一个RPC调用,建立通道),第一个DataNode收到请求会继续调用第二个DataNode,然后第二个调用第三个DataNode,将整个通道建立完成,逐级返回hadoop客户端。

6)hadoop客户端开始往第一个DataNode上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位(一个packet为64kb),当然在写入的时候通道会进行数据校验,它并不是通过一个packet进行一次校验而是以checksum为单位进行校验(512byte),第一台DataNode收到一个packet就会传给第二台,第二台传给第三台;第一台每传一个packet会放入一个应答队列等待应答。

7)当一个block传输完成之后,hadoop客户端再次请求NameNode上传第二个block的DataNode服务器,直至所有的block上传完成。

四、HDFS读取流程

1)hadoop客户端发送请求,调用Distributed File System API的open方法发送请求到NameNode,获得存放在NameNode节点上文件的block位置映射信息。

2)Namenode把文件所有block的位置信息返回给hadoop客户端。

3)hadoop客户端拿到block的位置信息后调用FSDataInputStream API的read方法并行的读取block信息,block默认有3个副本,所以每一个block只需要从一个副本读取。

4)hadoop客户端从DataNode上取回文件的所有block按照一定的顺序组成最终需要的文件。

五、HDFS的优缺点

随着互联网数据规模的不断增大,对文件存储系统提出了更高的要求,需要更大的容量、好更的性能以及安全性更高的文件存储系统,与传统分布式文件系统一样,HDFS分布式文件系统也是通过计算机网络与节点相连,也有传统分布式文件系统的优点和缺点。

1:HDFS的优点

高容错性

适合处理高吞吐量

适合存储和管理大规模数据

适合一次写入 多次读取

适合处理非结构化数据

2:HDFS的缺点

不适合低延时数据访问

不适合小文件存储

不支持文件随机修改

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
226 6
|
4月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
103 2
|
3月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
163 2
|
3月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
154 1
|
4月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
155 0
|
4月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
68 0
|
2月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
3月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
72 3
|
3月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
2月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
243 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型