进入DSW后,如何把工作环境切换为GPU状态

简介: 进入DSW后,如何把工作环境切换为GPU状态

要将阿里云Data Science Workshop (DSW)的工作环境切换为GPU状态,请按照以下步骤操作:

  1. 登录到DSW:
    打开浏览器,访问https://dsw-dev.data.aliyun.com/并使用您的阿里云账号登录。

  2. 创建或选择一个项目:
    如果您已经创建了一个项目,可以直接从主界面中选择该项目。如果您还没有创建项目,可以点击“创建项目”按钮,并根据提示完成项目创建。

  3. 进入开发环境:
    在选定的项目中,点击“开发环境”或“Notebook”选项卡,这会带您进入Jupyter Notebook或其他集成开发环境(IDE)。

  4. 配置GPU环境:
    在开发环境中,您通常需要在创建新笔记本时选择一个带有GPU支持的Kernel(内核)。如果默认提供的Kernel不包含GPU支持,您可能需要自行安装或配置。具体的步骤可能会因DSW的具体版本和设置而有所不同。

    一般来说,您可以通过以下步骤来配置GPU环境:

    • 点击“新建”按钮以创建一个新的笔记本。
    • 在弹出的对话框中,选择一个合适的编程语言(例如Python)。
    • 查找并选择一个带有“GPU”标签的Kernel。如果没有可用的GPU Kernel,您可能需要联系阿里云客服或查阅官方文档了解如何添加或配置GPU支持。
  5. 开始使用GPU:
    一旦选择了带有GPU支持的Kernel并创建了新的笔记本,您就可以开始编写和运行利用GPU计算能力的代码了。对于TensorFlow等深度学习框架,您可以在代码中指定使用GPU设备。

请注意,使用GPU可能需要额外的费用,并且可能会受到您账户资源限制的影响。如果您遇到任何问题或需要进一步的帮助,请参阅阿里云DSW的帮助文档或联系客户服务。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
9月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
815 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
2300 3
|
人工智能 Serverless 异构计算
[AI Cog] 想要运营AI业务,但没有GPU?环境搞不定?使用Cog帮您轻松将业务部署上云
[AI Cog] 想要运营AI业务,但没有GPU?环境搞不定?使用Cog帮您轻松将业务部署上云
|
机器学习/深度学习 人工智能 自然语言处理
人工智能平台PAI产品使用合集之进入DSW后,如何把工作环境切换为GPU状态
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
缓存 并行计算 Ubuntu
科研GPU环境配置-快让师兄弟们优雅地享受共享环境吧!
以下列举我对实验室4090的操作,目的是为了让实验室所有人都有隔离的沙盒环境,节省硬盘以及更方便 一听说老师买了24G 4090,真的超级兴奋!!!
530 0
科研GPU环境配置-快让师兄弟们优雅地享受共享环境吧!
|
2月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
302 1
|
2月前
|
人工智能 城市大脑 运维
喜讯!阿里云国产异构GPU云平台技术荣获“2025算力中国·年度重大成果”
2025年8月23日,在工业和信息化部新闻宣传中心、中国信息通信研究院主办的2025中国算力大会上,阿里云与浙江大学联合研发的“国产异构GPU云平台关键技术与系统”荣获「算力中国·年度重大成果」。该评选旨在选拔出算力产业具有全局性突破价值的重大成果,是业内公认的技术创新“风向标”。
324 0
|
7月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
1210 61
|
10月前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)

热门文章

最新文章