Lua 解决 Redis 缓存原子性问题

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Lua 解决 Redis 缓存原子性问题

Lua 解决 Redis 缓存原子性问题


文章目录

Redis 事务局限性

redis的缺点主要体现在并不支持完整的ACID事务,redis虽然提供事务功能,但redis的事务和关系数据库的事务不可相类比,redis的事务只能保证隔离性和⼀致性,无法保证原子性与持久性。

持久性之前说了,我们还可以通过使用Redis持久化操作将数据丢失的时间窗口限制在1秒之内。

而对于原子性来说:在Redis中单条命令是原子性,这是由 redis 单线程保障的,但是多条命令能否用 multi + exec 来保证其原子性呢?

原子性探究

Redis 中 multi + exec 并不支持回滚,例如有初始数据如下

set a 1000
set b 1000
set c a

执行

multi
decr a
incr b
incr c
exec

执行 incr c 时,由于字符串不支持自增导致此条命令失败,但之前的两条命令并不会回滚

更为重要的是,multi + exec 中的读操作没有意义,因为读的结果并不能赋值给临时变量,用于后续的写操作,既然 multi + exec 中读没有意义,就无法保证读 + 写的原子性,例如有初始数据如下

set a 1000
set b 1000

假设 a 和 b 代表的是两个账户余额,现在获取旧值,执行转账 500 的操作:

get a /* 存入客户端临时变量 */
get b /* 存入客户端临时变量 */
/* 客户端计算出 a 和 b 更新后的值 */
multi
set a 500
set b 1500
exec

但如果在 get 与 multi 之间其它客户端修改了 a 或 b,会造成丢失更新

解决原子性问题

为了解决上面的问题,我们可以应用乐观锁或者lua脚本

乐观锁保证原子性

watch 命令,用来盯住 key(一到多个),如果这些 key 在事务期间:

  • 没有被别的客户端修改,则 exec 才会成功
  • 被别的客户端改了,则 exec 返回 nil

还是上一个例子

get a /* 存入客户端临时变量 */
get b /* 存入客户端临时变量 */
/* 客户端计算出 a 和 b 更新后的值 */
watch a b /* 盯住 a 和 b */
multi
set a 500
set b 1500
exec

此时,如果其他客户端修改了 a 和 b 的值,那么 exec 就会返回 nil,并不会执行两条 set 命令,此时客户端可以进行重试

lua 脚本保证原子性

Redis 支持 lua 脚本,能保证 lua 脚本执行的原子性,可以取代 multi + exec

例如要解决上面的问题,可以执行如下命令

eval "local a = tonumber(redis.call('GET',KEYS[1]));local b = tonumber(redis.call('GET',KEYS[2]));local c = tonumber(ARGV[1]); if(a >= c) then redis.call('SET', KEYS[1], a-c); redis.call('SET', KEYS[2], b+c); return 1;else return 0; end" 2 a b 500
  • eval 用来执行 lua 脚本
  • 2 表示后面用空格分隔的参数中,前两个是 key,剩下的是普通参数
  • 脚本中可以用 keys[n] 来引用第 n 个 key,用 argv[n] 来引用第 n 个普通参数

其中双引号内部的即为 lua 脚本,格式化如下

local a = tonumber(redis.call('GET',KEYS[1]));
local b = tonumber(redis.call('GET',KEYS[2]));
local c = tonumber(ARGV[1]); 
if(a >= c) then 
    redis.call('SET', KEYS[1], a-c); 
    redis.call('SET', KEYS[2], b+c); 
    return 1;
else 
    return 0; 
end


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
30天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
172 85
|
5天前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
|
5天前
|
缓存 NoSQL 关系型数据库
云端问道21期实操教学-应对高并发,利用云数据库 Tair(兼容 Redis®)缓存实现极速响应
本文介绍了如何通过云端问道21期实操教学,利用云数据库 Tair(兼容 Redis®)缓存实现高并发场景下的极速响应。主要内容分为四部分:方案概览、部署准备、一键部署和完成及清理。方案概览中,展示了如何使用 Redis 提升业务性能,降低响应时间;部署准备介绍了账号注册与充值步骤;一键部署详细讲解了创建 ECS、RDS 和 Redis 实例的过程;最后,通过对比测试验证了 Redis 缓存的有效性,并指导用户清理资源以避免额外费用。
|
27天前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
55 5
|
NoSQL Redis
【Redis】Redis+Lua的使用注意事项
【Redis】Redis+Lua的使用注意事项
|
3月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
149 1
|
3月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
92 6
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构