GPU 虚拟化技术MIG简介和安装使用教程

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 使用多实例GPU (MIG/Multi-Instance GPU)可以将强大的显卡分成更小的部分,每个部分都有自己的工作,这样单张显卡可以同时运行不同的任务。本文将对其进行简单介绍并且提供安装和使用的示例。

什么是MIG

NVIDIA Multi-Instance GPU (MIG) 技术是 NVIDIA 推出的一种 GPU 虚拟化技术,允许一块物理 GPU 被分割成多个独立的 GPU 实例,每个实例可以被分配给不同的虚拟机、容器或用户。这种技术有助于更有效地利用 GPU 资源,提高 GPU 的共享性和多租户支持。

MIG 技术通常需要硬件和软件支持,包括支持 MIG 的 NVIDIA GPU 和相应的驱动程序。这使得 MIG 技术成为数据中心和云计算环境中更好地管理 GPU 资源的有力工具。它有助于提高 GPU 利用率,降低成本,并更好地满足不同应用程序和用户的需求。

MIG是如何工作的

MIG通过虚拟地将单个物理GPU划分为更小的独立实例,这项技术涉及GPU虚拟化,GPU的资源,包括CUDA内核和内存,被分配到不同的实例。这些实例彼此隔离,确保在一个实例上运行的任务不会干扰其他实例。

MIG支持GPU资源的动态分配,允许根据工作负载需求动态调整实例的大小。这种动态分配有助于有效地利用资源。多个应用程序或用户可以在同一个GPU上并发运行,每个GPU都有自己的专用实例。整个过程通过软件进行管理,为管理员提供了对实例配置和资源分配的控制。这种方法增强了在单个GPU上处理不同工作负载的灵活性、可扩展性和资源效率。

MIG 技术关键特点

  1. 资源划分:MIG 允许将一块物理 GPU 分割成多个 GPU 实例,每个实例具有自己的 GPU 核心、GPU 内存、NVLink 带宽等资源。这样可以更好地控制和划分 GPU 资源。
  2. 多租户支持:MIG 技术可以用于虚拟化 GPU,以便不同用户或应用程序可以共享同一块物理 GPU 而不会相互干扰。
  3. 动态资源调整:管理员可以根据工作负载的需求动态地重新配置 MIG 实例的资源,从而实现更好的资源利用和性能。
  4. 容错性:MIG 技术支持 GPU 实例的隔离,这意味着一个 GPU 实例中的问题不会影响到其他实例,从而提高了系统的容错性。
  5. 部署灵活性:MIG 技术可以用于云计算、虚拟化环境、容器化应用程序等多种情境,为不同的部署需求提供了灵活性。

MIG的条件

并不是所有的显卡都支持MIG,以下是官方给出的GPU型号:

可以看到,基本上就是A100和H100可以使用,虽然都是24G显存,但是消费级的4090是不支持的。

然后就是驱动

达到这些要求以后就可以使用了

MIG配置和使用

安装Nvidia SMI(这里使用ubuntu系统作为示例)很简单,只要安装好nvidia提供的工具包即可

 sudo apt-get install nvidia-utils

下一步就是验证Nvidia驱动程序。

 nvidia-smi

没问题的话就说明安装完成了。下面就是配置的命令:

 sudo nvidia-smi -i <GPU_ID> --mig on

nvidia-smi结果中包含了GPU ID。

验证MIG配置(需要GPU ID和实例ID进行下一步工作)

 nvidia-smi mig -lgip

验证成功后就说明我们的MIG已经正常可用,下面可以开始创建虚拟GPU

我们将单个GPU(硬件)划分为多个独立的GPU实例,以手动分担工作负载并降低工作平衡的成本。

 sudo nvidia-smi -i <GPU_ID> --mig <INSTANCE_COUNT>

-i :指定要使用的GPU设备。将替换为需要配置的GPU的实际ID。

-mig :用于配置mig (Multi-Instance GPU)。将替换为希望在指定GPU上创建的所需GPU实例数。每个实例都有自己的一组资源,包括内存和计算能力。

比如我们下面的示例:在GPU ID=0上创建3个实例

 sudo nvidia-smi -i 0 --mig 3

更改实例的资源分配(工作负载),主要目标是为特定的MIG实例调整资源分配

 sudo nvidia-smi -i <GPU_ID> -gi <INSTANCE_ID> -rg <WORKLOAD_PERCENT>

-i :指定执行该操作的GPU。例如,-i 0表示第一个GPU。

-gi :在指定GPU内执行操作的MIG实例。例如,-gi 1表示GPU上的第二个MIG实例。

-rg :分配给指定MIG实例的GPU资源的百分比。将替换为所需的百分比。例如-rg 70表示将70%的GPU资源分配给指定的MIG实例。

在GPU_ID = 0和MIG Instance=1上设置占GPU总资源70%的工作负载

 sudo nvidia-smi -i 0 -gi 1 -rg 70

Docker和MIG

大部分情况我们都会使用Docker来作为运行环境,所以这里我们再介绍一下Docker和MIG的配置。

安装NVIDIA Container Toolkit,这是我们再Docker中使用GPU的第一步,这里就不详细介绍了,我们直接使用命令安装。

 sudo apt-get install -y nvidia-container-toolkit

配置Docker守护进程以使用NVIDIA:编辑Docker守护进程配置文件/etc/docker/daemon.json),添加如下行:

 {
   "default-runtime": "nvidia",
   "runtimes": {
     "nvidia": {
       "path": "/usr/bin/nvidia-container-runtime",
       "runtimeArgs": []
     }
   }
 }

以上代码只是示例,请跟你的实际情况修改,本文不主要介绍如何再Docker中使用GPU,所以只作为简单示例。

配置完需要重启

 sudo systemctl restart docker

验证GPU可用性,以获取GPU信息

 docker run --gpus all nvidia/cuda:11.0-base nvidia-smi

下面开始我们的主要工作,配置MIG

 docker run --gpus device=0,1,2,3 -e NVIDIA_VISIBLE_DEVICES=0,1,2,3 my_container

可以根据想要使用的MIG设备数量来调整——gpu和NVIDIA_VISIBLE_DEVICES参数。这里的gpus是我们通过上面命令虚拟的GPU

总结

MIG能够将单个GPU划分为更小的实例,MIG为同时处理各种工作负载提供了经济高效且可扩展的解决方案。MIG的底层功能,包括资源隔离和动态分配,增强了GPU使用的灵活性、可扩展性和整体效率。

跨越数据中心、科学研究和人工智能开发的实际应用凸显了MIG在优化GPU资源和加速计算任务方面的影响。MIG是一个很好的技术,但是就目前显卡的价格来说对他的普及还是有很大的阻碍。不支持消费级的显卡,一张A100大概10万+,4张4090 6万多,我想没人会把一张A100分成4份用吧。

如果你对MIG有兴趣这里是官方文档:

https://avoid.overfit.cn/post/94d5e279ac7249638ae354a345ac4348

作者:Marcin Stasko

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2月前
|
存储 安全 虚拟化
虚拟化技术:实现资源高效利用和灵活管理的利器
虚拟化技术作为实现资源高效利用和灵活管理的重要手段,在数字化时代背景下,正逐步改变传统IT架构模式。本文概述了虚拟化技术的概念、原理及其在数据中心管理、云计算平台、企业信息化建设、科研教育及医疗行业的应用,并探讨了其面临的挑战与未来发展趋势。
224 3
|
26天前
|
安全 Linux KVM
Linux虚拟化技术:从Xen到KVM
Xen和KVM是Linux平台上两种主要的虚拟化技术,各有优缺点和适用场景。通过对比两者的架构、性能、安全性、管理复杂性和硬件依赖性,可以更好地理解它们的适用场景和选择依据。无论是高性能计算、企业虚拟化还是云计算平台,合理选择和配置虚拟化技术是实现高效、稳定和安全IT环境的关键。
85 8
|
25天前
|
存储 数据挖掘 数据库
虚拟化数据恢复—VMFS简介&误删除虚拟机的数据恢复案例
物理区:物理上连续的磁盘空间,即通常意义上的分区。 本地区:VMFS管理的物理区分为保留区和本地区,前面一部分是保留区,后面部分是本地区。本地区又分为元文件区和数据区。 元文件:与NTFS的元文件类似,属于FS的管理用数据。VMFS有6个元文件:.VH.SF/.FBB.SF/.FDC.SF/.SBC.SF/.PBC.SF/.PB2.SF。 元文件区:6个元文件占用的所有空间,在本地区的前面部分。 数据区:用于存放文件数据。 datastore:在ESX服务器上看到的VMFS存储空间。 LV:logical volume,所指的范围其实和本地区一样,即虚拟化卷。 LVM逻辑卷组:用来管理跨dis
|
5月前
|
存储 Linux 调度
OpenStack如何支持虚拟化技术?
【8月更文挑战第21天】
331 0
|
3月前
|
存储 分布式计算 分布式数据库
云计算和虚拟化技术
云计算是指把计算资源、存储资源、网络资源、应用软件等集合起来,采用虚拟化技术,将这些资源池化,组成资源共享池,共享池即是“云”。
194 64
|
2月前
|
存储 持续交付 虚拟化
|
4月前
|
KVM 虚拟化
虚拟化技术概述及KVM环境安装
关于虚拟化技术概述及KVM环境安装的教程,涵盖了虚拟化的定义、分类、管理工具,以及KVM的系统需求、安装步骤和使用指南。
129 11
虚拟化技术概述及KVM环境安装
|
5月前
|
存储 运维 虚拟化
Docker技术概论(1):Docker与虚拟化技术比较
Docker技术概论(1):Docker与虚拟化技术比较
246 17
Docker技术概论(1):Docker与虚拟化技术比较
|
4月前
|
存储 机器学习/深度学习 并行计算
GPU通信互联技术:GPUDirect、NVLink与RDMA
在高性能计算和深度学习领域,GPU已成为关键工具。然而,随着模型复杂度和数据量的增加,单个GPU难以满足需求,多GPU甚至多服务器协同工作成为常态。本文探讨了三种主要的GPU通信互联技术:GPUDirect、NVLink和RDMA。GPUDirect通过绕过CPU实现GPU与设备直接通信;NVLink提供高速点对点连接和支持内存共享;RDMA则在网络层面实现直接内存访问,降低延迟。这些技术各有优势,适用于不同场景,为AI和高性能计算提供了强大支持。
|
5月前
|
Devops 虚拟化 Docker
DevOps 中的标准虚拟化技术
【8月更文挑战第27天】
71 5