大数据Flink Source

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 大数据Flink Source

1 预定义Source

1.1 基于集合的Source

⚫ API

一般用于学习测试时编造数据时使用

1.env.fromElements(可变参数);

2.env.fromColletion(各种集合);

3.env.generateSequence(开始,结束);

4.env.fromSequence(开始,结束);

⚫ 代码演示:

package cn.oldlu.source;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Arrays;
/**
 * Author oldlu
 * Desc
 * 把本地的普通的Java集合/Scala集合变为分布式的Flink的DataStream集合!
 * 一般用于学习测试时编造数据时使用
 * 1.env.fromElements(可变参数);
 * 2.env.fromColletion(各种集合);
 * 3.env.generateSequence(开始,结束);
 * 4.env.fromSequence(开始,结束);
 */
public class SourceDemo01 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.source
        // * 1.env.fromElements(可变参数);
        DataStream<String> ds1 = env.fromElements("hadoop", "spark", "flink");
        // * 2.env.fromColletion(各种集合);
        DataStream<String> ds2 = env.fromCollection(Arrays.asList("hadoop", "spark", "flink"));
        // * 3.env.generateSequence(开始,结束);
        DataStream<Long> ds3 = env.generateSequence(1, 10);
        //* 4.env.fromSequence(开始,结束);
        DataStream<Long> ds4 = env.fromSequence(1, 10);
        //3.Transformation
        //4.sink
        ds1.print();
        ds2.print();
        ds3.print();
        ds4.print();
        //5.execute
        env.execute();
    }
}

1.2 基于文件的Source

⚫ API

一般用于学习测试

env.readTextFile(本地/HDFS文件/文件夹);//压缩文件也可以

⚫ 代码演示:

package cn.oldlu.source;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
 * Author oldlu
 * Desc
 * 1.env.readTextFile(本地/HDFS文件/文件夹);//压缩文件也可以
 */
public class SourceDemo02 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.source
        // * 1.env.readTextFile(本地文件/HDFS文件);//压缩文件也可以
        DataStream<String> ds1 = env.readTextFile("data/input/words.txt");
        DataStream<String> ds2 = env.readTextFile("data/input/dir");
        DataStream<String> ds3 = env.readTextFile("hdfs://node1:8020//wordcount/input/words.txt");
        DataStream<String> ds4 = env.readTextFile("data/input/wordcount.txt.gz");
        //3.Transformation
        //4.sink
        ds1.print();
        ds2.print();
        ds3.print();
        ds4.print();
        //5.execute
        env.execute();
    }
}

1.3 基于Socket的Source

一般用于学习测试

⚫ 需求:

1.在node1上使用nc -lk 9999 向指定端口发送数据nc是netcat的简称,原本是用来设置路由器,我们可以利用它向某个端口发送数据如果没有该命令可以下安装

yum install -y nc

2.使用Flink编写流处理应用程序实时统计单词数量

⚫ 代码实现:

package cn.oldlu.source;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
 * Author oldlu
 * Desc
 * SocketSource
 */
public class SourceDemo03 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.source
        DataStream<String> linesDS = env.socketTextStream("node1", 9999);
        //3.处理数据-transformation
        //3.1每一行数据按照空格切分成一个个的单词组成一个集合
        DataStream<String> wordsDS = linesDS.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                //value就是一行行的数据
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(word);//将切割处理的一个个的单词收集起来并返回
                }
            }
        });
        //3.2对集合中的每个单词记为1
        DataStream<Tuple2<String, Integer>> wordAndOnesDS = wordsDS.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                //value就是进来一个个的单词
                return Tuple2.of(value, 1);
            }
        });
        //3.3对数据按照单词(key)进行分组
        //KeyedStream<Tuple2<String, Integer>, Tuple> groupedDS = wordAndOnesDS.keyBy(0);
        KeyedStream<Tuple2<String, Integer>, String> groupedDS = wordAndOnesDS.keyBy(t -> t.f0);
        //3.4对各个组内的数据按照数量(value)进行聚合就是求sum
        DataStream<Tuple2<String, Integer>> result = groupedDS.sum(1);
        //4.输出结果-sink
        result.print();
        //5.触发执行-execute
        env.execute();
    }
}

2 自定义Source

2.1 随机生成数据

⚫ API

一般用于学习测试,模拟生成一些数据Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,

分类如下:

SourceFunction:非并行数据源(并行度只能=1)

RichSourceFunction:多功能非并行数据源(并行度只能=1)

ParallelSourceFunction:并行数据源(并行度能够>=1)

RichParallelSourceFunction:多功能并行数据源(并行度能够>=1)–后续学习的Kafka数据源使用的

就是该接口

⚫ 需求

每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)

要求:


随机生成订单ID(UUID)

随机生成用户ID(0-2)

随机生成订单金额(0-100)

时间戳为当前系统时间

⚫ 代码实现

package cn.oldlu.source;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.util.Random;
import java.util.UUID;
/**
 * Author oldlu
 * Desc
 *需求
 * 每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)
 * 要求:
 * - 随机生成订单ID(UUID)
 * - 随机生成用户ID(0-2)
 * - 随机生成订单金额(0-100)
 * - 时间戳为当前系统时间
 *
 * API
 * 一般用于学习测试,模拟生成一些数据
 * Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,分类如下:
 * SourceFunction:非并行数据源(并行度只能=1)
 * RichSourceFunction:多功能非并行数据源(并行度只能=1)
 * ParallelSourceFunction:并行数据源(并行度能够>=1)
 * RichParallelSourceFunction:多功能并行数据源(并行度能够>=1)--后续学习的Kafka数据源使用的就是该接口
 */
public class SourceDemo04_Customer {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.Source
        DataStream<Order> orderDS = env
                .addSource(new MyOrderSource())
                .setParallelism(2);
        //3.Transformation
        //4.Sink
        orderDS.print();
        //5.execute
        env.execute();
    }
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public static class Order {
        private String id;
        private Integer userId;
        private Integer money;
        private Long createTime;
    }
    public static class MyOrderSource extends RichParallelSourceFunction<Order> {
        private Boolean flag = true;
        @Override
        public void run(SourceContext<Order> ctx) throws Exception {
            Random random = new Random();
            while (flag){
                Thread.sleep(1000);
                String id = UUID.randomUUID().toString();
                int userId = random.nextInt(3);
                int money = random.nextInt(101);
                long createTime = System.currentTimeMillis();
                ctx.collect(new Order(id,userId,money,createTime));
            }
        }
        //取消任务/执行cancle命令的时候执行
        @Override
        public void cancel() {
            flag = false;
        }
    }
}

2.2 MySQL

⚫ 需求:

实际开发中,经常会实时接收一些数据,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据那么现在先完成一个简单的需求:从MySQL中实时加载数据

要求MySQL中的数据有变化,也能被实时加载出来

⚫ 准备数据

CREATE TABLE `t_student` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(255) DEFAULT NULL,
    `age` int(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8;
INSERT INTO `t_student` VALUES ('1', 'jack', '18');
INSERT INTO `t_student` VALUES ('2', 'tom', '19');
INSERT INTO `t_student` VALUES ('3', 'rose', '20');
INSERT INTO `t_student` VALUES ('4', 'tom', '19');
INSERT INTO `t_student` VALUES ('5', 'jack', '18');
INSERT INTO `t_student` VALUES ('6', 'rose', '20');

⚫ 代码实现:

package cn.oldlu.source;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.concurrent.TimeUnit;
/**
 * Author oldlu
 * Desc
 * 需求:
 * 实际开发中,经常会实时接收一些数据,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据
 * 那么现在先完成一个简单的需求:
 * 从MySQL中实时加载数据
 * 要求MySQL中的数据有变化,也能被实时加载出来
 */
public class SourceDemo05_Customer_MySQL {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //2.Source
        DataStream<Student> studentDS = env.addSource(new MySQLSource()).setParallelism(1);
        //3.Transformation
        //4.Sink
        studentDS.print();
        //5.execute
        env.execute();
    }
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public static class Student {
        private Integer id;
        private String name;
        private Integer age;
    }
    public static class MySQLSource extends RichParallelSourceFunction<Student> {
        private Connection conn = null;
        private PreparedStatement ps = null;
        @Override
        public void open(Configuration parameters) throws Exception {
            //加载驱动,开启连接
            //Class.forName("com.mysql.jdbc.Driver");
            conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata", "root", "root");
            String sql = "select id,name,age from t_student";
            ps = conn.prepareStatement(sql);
        }
        private boolean flag = true;
        @Override
        public void run(SourceContext<Student> ctx) throws Exception {
            while (flag) {
                ResultSet rs = ps.executeQuery();
                while (rs.next()) {
                    int id = rs.getInt("id");
                    String name = rs.getString("name");
                    int age = rs.getInt("age");
                    ctx.collect(new Student(id, name, age));
                }
                TimeUnit.SECONDS.sleep(5);
            }
        }
        @Override
        public void cancel() {
            flag = false;
        }
        @Override
        public void close() throws Exception {
            if (conn != null) conn.close();
            if (ps != null) ps.close();
        }
    }
}


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
5天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
26 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
26天前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
60 0
|
6天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
32 1
|
26天前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
51 1
|
24天前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
|
26天前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
105 0
|
26天前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
40 0
|
26天前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
36 0
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
469 8
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

热门文章

最新文章