Python 数据分析(四):Pandas 进阶

简介: Python 数据分析(四):Pandas 进阶

1. 概述

我们在上一篇文章初识 Pandas中已经对 Pandas 作了一些基本介绍,本文我们进一步来学习 Pandas 的一些使用。

2. 缺失项

在现实中我们获取到的数据有时会存在缺失项问题,对于这样的数据,我们通常需要做一些基本处理,下面我们通过示例来看一下。

import numpy as np
from pandas import Series, DataFrame

s = Series(['1', '2', np.nan, '3'])
df = DataFrame([['1', '2'], ['3', np.nan], [np.nan, 4]])
print(s)
print(df)
#  清除缺失项
print(s.dropna())
print(df.dropna())
# 填充缺失项
print(df.fillna('9'))
print(df.fillna({
   0:'5', 1:'6'}))

3. 分组聚合

我们通过示例来了解一下分组、聚合操作。

from pandas import DataFrame

df = DataFrame({
   'name':['张三', '李四', '王五', '赵六'],
                'gender':['男', '女', '男', '女'],
                'age':[22, 11, 22, 33]})
# 根据 age 分组
gp1 = df.groupby('age')
# 根据 age、gender 分组
gp2 = df.groupby(['age', 'gender'])
# 根据 gender 进行分组,将 name 作为分组的键
gp3 = df['gender'].groupby(df['name'])
# 查看分组
print(gp2.groups)
# 分组数量
print(gp2.count())
# 选择分组
print(gp2.get_group((22, '男')))
print('---------')
# 聚合
gp4 = df.groupby(df['gender'])
# 和
print(gp4.sum())
# 平均值
print(gp4.mean())
# 最大值
print(gp4.max())
# 最小值
print(gp4.min())
# 同时做多个聚合运算
print(gp4.agg(['sum', 'mean']))

4. 数据合并

Pandas 具有高性能内存中连接操作,与 SQL 相似,它提供了 merge() 函数作为 DataFrame 对象之间连接操作的入口,我们通过示例来看一下。

from pandas import DataFrame
import pandas as pd

df1 = DataFrame({
   'A':[2, 4, 5], 'B':[1, 2, 3], 'C':[2, 3, 6]})
df2 = DataFrame({
   'D':[1, 3, 6], 'E':[2, 5, 7], 'F':[3, 6, 8]})
df3 = DataFrame({
   'G':[2, 3, 6], 'H':[3, 5, 7], 'I':[4, 6, 8]})
df4 = DataFrame({
   'G':[1, 3, 5], 'H':[4, 6, 8], 'I':[5, 7, 9]})
# 左连接(以 d1 为基础)
print(df1.join(df2, how='left'))
# 右连接
print(df1.join(df2, how='right'))
# 外连接
print(df1.join(df2, how='outer'))
# 合并多个 DataFrame
print(df3.join([df1, df2]))
# 指定列名进行合并
print(pd.merge(df3, df4, on='G'))
print(pd.merge(df3, df4, on=['G', 'H']))
print(pd.merge(df3, df4, how='left'))
print(pd.merge(df3, df4, how='right'))
print(pd.merge(df3, df4, how='outer'))

5. 数据可视化

Pandas 的 Series 和 DataFrame 的绘图功能是包装了 matplotlib 库的 plot() 方法实现的,下面我们通过示例来看一下。

5.1 折线图

折线图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame(np.random.randn(10,2), columns=list('AB'))
df.plot()
plt.show()

看一下效果:

5.2 条形图

纵置条形图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame(np.random.rand(5,3), columns=list('ABC'))
df.plot.bar()
plt.show()

看一下效果:

image.png

横置条形图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame(np.random.rand(5,3), columns=list('ABC'))
df.plot.barh()
plt.show()

看一下效果:
image.png

5.3 直方图

直方图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame({
   'A':np.random.randn(800)+1, 'B':np.random.randn(800)}, columns=list('AB'))
df.plot.hist(bins=10)
plt.show()

看一下效果:

image.png

我们还可以将 A、B 分开显示,代码实现如下:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame({
   'A':np.random.randn(800)+1, 'B':np.random.randn(800)}, columns=list('AB'))
df.hist(bins=10)
plt.show()

看一下效果:

image.png

5.4 散点图

散点图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame(np.random.rand(20, 2), columns=list('AB'))
df.plot.scatter(x='A', y='B')
plt.show()

看一下效果:

image.png

5.5 饼图

饼图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt

df = pd.DataFrame([30, 20, 50], index=list('ABC'), columns=[''])
df.plot.pie(subplots=True)
plt.show()

看一下效果:

image.png

相关文章
|
21天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
120 71
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
81 3
|
20天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
128 73
|
17天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
62 22
|
10天前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
22 2
|
21天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
58 5
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
134 4
数据分析的 10 个最佳 Python 库
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
102 5
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势