[数据结构与算法]基础算法(排序, 二分, 前缀, 差分)

简介: 快速排序:(分治的思想)✅确定分界点:q[l], q[(r+l)/2], q[r] (中间点可以随机选, 按照同一规则, 这里选(l+r)/2该点)维护数组:维护分界点的左边都比分界点小,分界点的右边都比分界点大按照维护关系, 递归处理左右两段💡思想解释: 先整后细:先让大体总的符合条件,再部分部分解决

目录


一. 快速排序


二. 归并排序


三.  二分


✨整数二分:


✨浮点数的二分


四.  前缀和


✨ 一维前缀


✨二维前缀


五. 差分


一. 快速排序

快速排序:(分治的思想)✅


确定分界点:q[l],  q[(r+l)/2],  q[r] (中间点可以随机选, 按照同一规则, 这里选(l+r)/2该点)


维护数组:维护分界点的左边都比分界点小,分界点的右边都比分界点大


按照维护关系, 递归处理左右两段


💡思想解释:


       先整后细:先让大体总的符合条件,再部分部分解决


模板代码

void quick_sort(int q[], int L, int R){
    if(L >= R) return;
    int x = q[L], i = L - 1, j = R + 1;
    while(i < j){
        do i ++; while(q[i] < x);
        do j --; while(q[j] > x);
        if(i < j) swap(q[i], q[j]);
    }
    quick_sort(q, L, j);
    quick_sort(q, j + 1, R);
}


🌸代码解析:


(1) 对于 x = q[l + r >> 1], j 始终走到q[R - 1] 的位置, 因此为了不陷入死循环必须选择


quick_sort(q, l, j);


quick_sort(q, j + 1, r);



因为选择 i 的话, i 即可能出现在 L 的位置上也可能出现在 R 的位置上, 当出现在第一种情况的时候(图中的情况一)不会有影响, 但是出现在情况二的时候就会出现陷入死循环的情况


quick_sort(q, l, i- 1), quick_sort(q, i, r);


以上代码代入就会出现quick_sort(q, l, l) , quick_sort(q, l, r), 对于第二个函数, 与我起初调用的函数想同, 这说明有一次执行了该函数, 因此下一次也会执行, 这样往复, 就陷入了死循环.


⚠ : 重点👑🌈🎉👉✨⭐


1. 分治点的选择


2. i++   和   j--


3. 递归的参数的确定


还有另外一个版本的代码:

void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;
    int i = l - 1, j = r + 1, x = q[l + r + 1>> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, i - 1), quick_sort(q, i, r);
}


二. 归并排序

(也是分治的思想)✅


1. 将数组从中间分开, 分别对其按照这三步进行排序, 直到无法分割


2. 把两边排好序的数组再次进行统一排序


3. 再将左右两个数组进行合并


👑 思路 : 先细后整, 先保证这部分是排好序的, 直接那这一部分去和另一部分排好序的进行组合, 这样整个数组就是排好序的

void merge_sort(int a[], int l, int r) {
    if (l >= r)return;
    int mid = l + r >> 1;
    merge_sort(a, l, mid);
    merge_sort(a, mid + 1, r);
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (a[i] >= a[j]) temp[k++] = a[i++];
        else temp[k++] = a[j++];
    while (i <= mid) temp[k++] = a[i++];
    while (j <= r) temp[k++] = a[j++];
    for (i = l, j = 0; i <= r; ++i, ++j) a[i] = temp[j];
}


🌈图解 :



三.  二分

✨整数二分:

看 mid(你选取的中点) 是 左边 还是 右边



代码 :


int bSearch_1(int l, int r) {
    while (l < r) {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;  // 如果左边界满足就执行这个
        else l = mid + 1;
    }
    return l;
}
int bSearch_2(int a[], int l, int r) {
    while (l < r) {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;  // 如果右边界满足就执行这个
        else r = mid - 1;
    }
    return l;
}


⭐总结的口诀 : 不管快排和二分, 中点偏左选右边, 中点偏右选左边


偏左 : mid = l + r >> 1


偏右 : mid = l + r + 1 >> 1


解释 : 中点分别对应快排中的分治点和二分中的中点, 当快排中的中点偏左那么就选 j (j 是右边的, i 是左边的),  反之, 选 i 为递归参数;  当二分中的中点偏左时, 那么就选r = mid, 反之选 l = mid.


✨浮点数的二分

浮点数二分主要变化为截至条件为 : ( r - l ) > 1e6  (差的值)


以下为求 n 的平方根的习题, 可以更好地理解浮点数二分

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int main() {
    double n;
    cin >> n;
    double l = 0, r = n;
    while((r-l) > 1e-6) {
        double mid = (l + r)/2;
        if(n <= mid * mid) r = mid;
        else l = mid;
    }
    printf("%0.2lf\n", l);
    return 0;
}


 


四.  前缀和

前缀和 : 顾名思义是数组中某元素前面的所有和或者部分和


为什么会出现它 : 求一段和的时间复杂度为 O(1)


✨ 一维前缀

a[1],a[2],a[3].....a[n]

s[i] = a[i] + a[i-1]...a[2] + a[1]


a[3] + a[4]...a[14] + a[15] = s[15] - s[3-1]

s[l,r] = s[r] - s[l-1]


for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);       //读入n个数


for (int i = 1; i <= n; i ++ ) s[i] = s[i - 1] + a[i];   //处理前缀和


✨二维前缀

s[i][j] 表示二维数组中,左上角(1, 1)到右下角(i, j)所包围的矩阵元素的和


s[i][j] = s[i - 1][j] + s[i][j - 1 ] + a[i] [j] - s[i - 1][j - 1]

以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:

s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]



五. 差分

差分就是将前缀和的操作反过来


已知 : s[i]   得到   a[i] = s[i] - s[i - 1]


差分的好处在于, 给一段数组加一个数只需要对两个位置( b[i]   和  b[j+1] )进行操作即可


🎉差分数组:


首先给定一个原数组a:a[1], a[2], a[3],,,,,, a[n];


然后我们构造一个数组b : b[1], b[2], b[3],,,,,, b[i];


使得 a[i] = b[1] + b[2] + b[3] + ,,,,,, + b[i]


也就是说,a数组是b数组的前缀和数组,反过来我们把b数组叫做a数组的差分数组。换句话说,每一个a[i]都是b数组中从头开始的一段区间和。


👉构造差分数组的时候的巧妙方法 : 初始化就进行差分


如下:(⚠ : b 数组从下标 1 开始)


a[0 ]= 0; (为了呈现规律, 可有可无)


b[1] = a[1] - a[0];


b[2] = a[2] - a[1];


b[3] = a [3] - a[2];


........


b[n] = a[n] - a[n - 1];


我们只要有b数组,通过前缀和运算,就可以在O(n) 的时间内得到 a 数组 。


✨差分的用处解析 :


给定区间[l, r ],让我们把a数组中的[l, r] 区间中的每一个数都加上c,即 a[l] + c , a[l + 1] + c , a[l + 2] + c ,,,,,, a[r] + c;


始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i]的修改,会影响到a数组中从a[i]及往后的每一个数。


首先让差分b数组中的 b[l] + c ,通过前缀和运算,a数组变成 a[l] + c ,a[l + 1] + c,,,,,, a[n] + c;


然后我们打个补丁,b[r + 1] - c, 通过前缀和运算,a数组变成 a[r + 1] - c,a[r + 2] - c,,,,,,,a[n] - c;




相关文章
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
79 8
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
77 7
|
2月前
|
算法
数据结构与算法二:栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式
这篇文章讲解了栈的基本概念及其应用,并详细介绍了中缀表达式转换为后缀表达式的算法和实现步骤。
59 3
|
2月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
33 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
2月前
|
存储 算法 Java
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
前缀(波兰)表达式、中缀表达式和后缀(逆波兰)表达式的基本概念、计算机求值方法,以及如何将中缀表达式转换为后缀表达式,并提供了相应的Java代码实现和测试结果。
93 0
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
32 0
|
2月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
76 0
|
2月前
|
人工智能 算法 BI
一篇带你速通差分算法(C/C++)
一篇带你速通差分算法(C/C++)
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
13天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。