网络安全CTF流量分析-入门1-流量分析中的Sql注入

简介: 从分析Sql流量入门CTF流量分析

流量分析中的Sql注入

在流量分析的场景中,有一类场景是抓取Sql攻击的流量,通过分析Sql流量来判断攻击者获取了什么敏感字符。
下面以一道例题为例。

image.png

打开数据包观察是HTTP报文为主。
一般流量除非是加密或者不常见的协议,否则通常都建议打开导出==>HTTP查看报文大致信息。
image.png

这里观察到了Sql流量的特征
如果不了解Sql注入的可以先去学习一下Sql注入。
经过观察,发现是逐个读取尝试试验ASCII码,通过返回包的大小来进行校验。
获得正确值返回包大小是704
获得错误值返回包大小是720
这里可以根据大小排序。
image.png

通过排序后,可以看到是从第一位爆破到第25位。
提取出数值

102 108 97 103 123 119 49 114 101 115 104 65 82 75 95 101 122 95 49 115 110 116 105 116 125

Ascii码转码得到

flag{w1reshARK_ez_1sntit}
目录
相关文章
|
13天前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
49 8
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
90 3
图卷积网络入门:数学基础与架构设计
|
24天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
75 2
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
74 3
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
SQL 安全 前端开发
Web学习_SQL注入_联合查询注入
联合查询注入是一种强大的SQL注入攻击方式,攻击者可以通过 `UNION`语句合并多个查询的结果,从而获取敏感信息。防御SQL注入需要多层次的措施,包括使用预处理语句和参数化查询、输入验证和过滤、最小权限原则、隐藏错误信息以及使用Web应用防火墙。通过这些措施,可以有效地提高Web应用程序的安全性,防止SQL注入攻击。
65 2
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
消息中间件 编解码 网络协议
Netty从入门到精通:高性能网络编程的进阶之路
【11月更文挑战第17天】Netty是一个基于Java NIO(Non-blocking I/O)的高性能、异步事件驱动的网络应用框架。使用Netty,开发者可以快速、高效地开发可扩展的网络服务器和客户端程序。本文将带您从Netty的背景、业务场景、功能点、解决问题的关键、底层原理实现,到编写一个详细的Java示例,全面了解Netty,帮助您从入门到精通。
185 0
|
2月前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
59 1
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
186 1