多元回归预测 | Matlab 遗传算法优化随机森林(GA-RF)回归预测

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 多元回归预测 | Matlab 遗传算法优化随机森林(GA-RF)回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着可再生能源的快速发展,风电作为一种清洁、可持续的能源形式,受到了广泛的关注和应用。然而,风电的波动性和不稳定性给其发电效率和可靠性带来了一定的挑战。因此,准确预测风电发电量对于优化风电发电系统的运行和规划至关重要。

在风电发电量的预测中,回归分析是一种常用的方法。随机森林(Random Forest,简称RF)是一种强大的回归算法,它通过构建多个决策树来对数据进行拟合和预测。然而,传统的RF算法在处理大规模数据集时存在一定的局限性,其性能可能受到数据维度的限制。为了克服这些问题,我们引入了遗传算法(Genetic Algorithm,简称GA)来优化RF算法,从而提高风电数据回归预测的准确性和效率。

遗传算法是一种模拟自然选择和遗传机制的优化算法,通过模拟生物进化过程中的选择、交叉和变异等操作来搜索最优解。在GA-RF算法中,我们首先通过遗传算法对RF算法的参数进行优化,以找到最佳的参数组合。然后,利用优化后的RF算法对风电数据进行回归预测。

具体而言,GA-RF算法的实现步骤如下:

  1. 初始化种群:根据问题的要求和限制,初始化一组初始解作为种群。
  2. 适应度评估:将每个个体(参数组合)应用于RF算法,并根据预测结果计算适应度值。适应度值可以根据预测误差、相关系数等指标来评估。
  3. 选择操作:根据适应度值,选择一部分个体作为父代,用于产生下一代。
  4. 交叉操作:对选定的父代个体进行交叉操作,生成新的个体。
  5. 变异操作:对新生成的个体进行变异操作,引入新的解。
  6. 更新种群:将新生成的个体加入种群,形成新一代。
  7. 终止条件判断:根据预设的终止条件(如迭代次数、适应度阈值等),判断是否达到终止条件。
  8. 重复步骤2-7,直到达到终止条件。

通过GA-RF算法,我们可以得到优化后的RF模型,用于风电数据的回归预测。这种基于遗传算法优化的RF算法能够更好地适应大规模数据集,并提高预测的准确性和效率。

总结起来,风电数据回归预测在优化风电发电系统的运行和规划中起着重要的作用。通过引入遗传算法优化的随机森林算法(GA-RF),我们可以克服传统RF算法在处理大规模数据集时的局限性,提高预测的准确性和效率。未来,我们可以进一步研究和改进GA-RF算法,以适应不同的风电数据预测问题,并推动风电发电系统的可持续发展。

核心代码

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)% 本函数完成变异操作% pcorss                input  : 变异概率% lenchrom              input  : 染色体长度% chrom     input  : 染色体群% sizepop               input  : 种群规模% opts                  input  : 变异方法的选择% pop                   input  : 当前种群的进化代数和最大的进化代数信息% bound                 input  : 每个个体的上届和下届% maxgen                input  :最大迭代次数% num                   input  : 当前迭代次数% ret                   output : 变异后的染色体for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,    %但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)    % 随机选择一个染色体进行变异    pick=rand;    while pick==0        pick=rand;    end    index=ceil(pick*sizepop);    % 变异概率决定该轮循环是否进行变异    pick=rand;    if pick>pmutation        continue;    end    flag=0;    while flag==0        % 变异位置        pick=rand;        while pick==0                  pick=rand;        end        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异            pick=rand; %变异开始             fg=(rand*(1-num/maxgen))^2;        if pick>0.5            chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;        else            chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;        end   %变异结束        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性    endendret=chrom;

⛄ 运行结果

⛄ 参考文献

[1] 张恪.基于能耗预测的空调测试任务调度问题研究[D].广东工业大学[2023-08-25].

[2] 唐阔,胡国圣,车喜龙,等.基于遗传算法优化支持向量回归机的网格负载预测模型[J].吉林大学学报:理学版, 2010, 48(2):5.DOI:10.3724/SP.J.1238.2010.00502.

[3] 胡友涛,胡昌华.一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法[J].上海交通大学学报, 2011, 45(8):6.DOI:CNKI:SUN:SHJT.0.2011-08-025.

[4] 杨思瑞,白海清,鲍骏,等.基于回归分析和遗传算法优化的BP神经网络熔覆层形貌预测[J].激光与光电子学进展, 2022, 59(21):9.DOI:10.3788/LOP202259.2114002.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
6天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
6天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
8天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
9天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
4月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。