C语言——数据在内存中的存储(上)(一)

简介: C语言——数据在内存中的存储(上)

1. 数据类型的介绍


之前已经介绍过C语言中的基本数据类型了,主要有:


  • char //字符数据类型
  • short //短整型
  • int //整形
  • long //长整型
  • long long //更长的整形
  • float //单精度浮点数
  • double //双精度浮点数

注意:C语言中是是没有字符串类型的。


类型的意义:


  1. 使用这种类型的数据所开辟的内存空间的大小。
  2. 如何看待内存空间的视角。


2. 类型的基本分类


【整形家族】


char :unsigned char signed char


short :unsigned short signed short


int :unsigned int signed int


long :unsigned long signed long


long long :unsigned long long signed long long


注意:C语言规定:sizeof(long)>=sizeof(int),所以long类型的占用的空间不能确定是4还是8。


【浮点数家族】


float


double


【构造类型】


数组类型


结构体类型


枚举类型


联合类型


【指针类型】


int *pi;


char *pc;


float* pf;


void* pv;


3. 整形在内存中的存储


由于变量的创建是需要空间的,具体使用的空间的大小是根据不同的类型而确定的。例如:


char ch = 0;这里ch变量是char类型,所以就在内存中占用了一个字节。


注意:char类型一般C语言官方没有明确规定是 signed char还是 unsigned char,一般的编译器,例如VS上,char就是signed char 。但是除了char以外,其他的整形都是有明确规定的,例如:int就是signed int。


那么不同的数据类型所能表示的范围是多少呢?我们可以通过以下代码来查看:


#include<stdio.h>
#include<stdlib.h>
#include <limits.h>
int main()
{
  printf("%d\n", INT_MAX);
  printf("%d\n", INT_MIN);
  return 0;
}


6742e771f53e22858208c6557cc659b4_07add5bc65a140199f461215fcefb463.png


那么这些数据的范围大小是怎么计算出来的呢?这里以char为例:


char占用一个字节:一个字节有8个比特位,每一个比特位只能是0或1,所以char类型在内存中组合方式一共就有256种:


90b1dc2974eb810f44ab45d0bb8195e5_41035def92c5490b900fefa418cde0ec.png


注意:这里图中所有的二进制序列都是代表的是内存中的补码。由此观之,char类型的数据范围就是:-128~127。unsigned char的范围就是0~255。


f0c2396c5379b1d4e1407aa3c06b7169_8ab92347d4314ca9b35f5dacfcdaeaa5.png


由此类推:short数据范围就是:-32768~32767。其他的整数数据类型的范围小伙伴们可以自行查阅。


3.1 整形在内存中的存储


计算机中保存整数二进制的方式主要有三种,分别是原码,反码,补码。整形在内存中主要是以补码的形式保存。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位则是直接读取即可。


正数的原、反、补码都相同。


负整数的三种表示方法各不相同。


原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。


补码:将原码的符号位不变,其他位依次按位取反就可以得到反码。


反码+1就得到补码。


对于整形来说:数据存放内存中其实存放的是补码。使用补码可以将其符号位和数值域进行统一运算。


原因:


在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理; 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程 是相同的,不需要额外的硬件电路。


对于数据存放内存中存放的是补码我们可以通过编译器进行直接观察。例如:-1的补码是32个1,用16进制表示就是全f。


8d899fa95df95bfc59f396055cec15cb_ee5b87c629ad405f8100ec4510a7ea75.png


但我们把例子换成4的时候:


c1af5aac354397b79a3373729612908b_14d5f5e64f3844c99d45108f54a64a24.png


这里发现内存中是有低地址到高地址存放数据的。数据的低权值位是放在低地址处的。这里就要引出新概念了:大端字节序和小端字节序。


相关文章
|
1月前
|
存储 程序员 编译器
C 语言中的数据类型转换:连接不同数据世界的桥梁
C语言中的数据类型转换是程序设计中不可或缺的一部分,它如同连接不同数据世界的桥梁,使得不同类型的变量之间能够互相传递和转换,确保了程序的灵活性与兼容性。通过强制类型转换或自动类型转换,C语言允许开发者在保证数据完整性的前提下,实现复杂的数据处理逻辑。
|
1月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
50 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
1月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
64 6
|
1月前
|
存储 数据管理 C语言
C 语言中的文件操作:数据持久化的关键桥梁
C语言中的文件操作是实现数据持久化的重要手段,通过 fopen、fclose、fread、fwrite 等函数,可以实现对文件的创建、读写和关闭,构建程序与外部数据存储之间的桥梁。
|
2月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
56 6
|
2月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
163 13
|
2月前
|
存储 数据建模 程序员
C 语言结构体 —— 数据封装的利器
C语言结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起,形成一个整体。它支持数据封装,便于管理和传递复杂数据,是程序设计中的重要工具。
|
2月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
74 11
|
2月前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
2月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。