[数据结构 -- C语言] 二叉树(BinaryTree)3

简介: [数据结构 -- C语言] 二叉树(BinaryTree)3

4.2.4 层序遍历实现代码

对队列还有不清楚的同学可以看看这篇文章,队列是一篇完整的文章哦,点后面文字跳转,https://blog.csdn.net/Ljy_cx_21_4_3/article/details/130739681

// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
  Queue q;
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);//先将队头元素记下来
    QueuePop(&q);
    printf("%c ", front->data);
    if (front->left)
      QueuePush(&q, front->left);
    if (front->right)
      QueuePush(&q, front->right);
  }
  QueueDestroy(&q);
}
int main()
{
  char a[] = { '1','2','3',NULL,NULL,'4',NULL,'5','6',NULL,NULL,NULL,NULL };
  int i = 0;
  BTNode* root = BinaryTreeCreate(a, &i);
  BinaryTreeLevelOrder(root);
  printf("\n");
  return 0;
}



4.3 节点个数

4.3.1 二叉树节点个数 -- BinaryTreeSize

思想:我们知道,二叉树是分为根节点,左子树,右子树三部分的。所以我们要求二叉树的节点总个数时,只需要求左子树,右子树的节点个数,再加上根节点,就计算出了二叉树的节点个数。


我们举个例子来类比一下这个思想:


如果一个高中学校的校长不知道学校有多少名学生,现在校长要查一下学校现有多少名学生时,校长不可能每个班去数人数,这效率太低了。校长这时将任务分给三个年级组长,各年级组长去统计各年级人数,最后汇总给校长,加起来就好了。年级组长也纷纷效仿,让每个班的班主任去统计,班主任将任务派给各班班长,班长数完人一级一级的汇报上去,最后到校长那里,校长只需要将年级组长汇报上来的人数加起来即可。这种方式其实就是分治思想,分而治之,效率不仅提高了,出错率也会大大降低。


我们画图来明确一下:

实现代码:

int BinaryTreeSize(BTNode* root)
{
  if (NULL == root)
    return 0;
  //分治算法
  return BinaryTreeSize(root->left)
    + BinaryTreeSize(root->right) + 1;
  //简化
  //return root == NULL ? 0 : BinaryTreeSize(root->left)
  //            + BinaryTreeSize(root->right) + 1;//简化代码
}

递归图:


结果展示:



4.3.2 二叉树叶子节点个数 -- BinaryTreeLeafSize

思想:在统计叶子节点的时候用到的思路依旧是分治思想,左子树的叶子节点+右子树的叶子节点就是整个二叉树的叶子节点。 叶子节点即就是度为 0 的节点,因此判断条件就是节点的左右孩子都为空。

int BinaryTreeLeafSize(BTNode* root)
{
  if (NULL == root)
    return 0;
  if (NULL == root->left && NULL == root->right)
    return 1;
  return BinaryTreeLeafSize(root->left)
    + BinaryTreeLeafSize(root->right);
}


运行结果:



4.3.3 二叉树第k层节点个数 -- BinaryTreeLevelKSize

思想:仍旧是分治的思想,因为要计算二叉树的第K层节点个数,因此只要计算出左右子树的 k-1 层的节点个数即可。
这里分三种情况:

1.当 k<0 时,返回 0;

2.当 k=1 时,第一层就一个根节点,返回 1;

3.当 k>1 时,按照思想往下递归。
实现代码:

int BinaryTreeLevelKSize(BTNode* root, int k)
{
  assert(k > 0);
  if (NULL == root)
    return 0;
  if (1 == k)
    return 1;
  return BinaryTreeLevelKSize(root->left, k - 1)
    + BinaryTreeLevelKSize(root->right, k - 1);
}


运行结果:



4.4 树的高度 -- BTreeHeight

思想:二叉树的高度我们依旧使用分治思想,求出左数高度与右数高度,分别 +1(加上根节点这一层),哪个值大哪个就是树的高度。

实现代码

int BTreeHeight(BTNode* root)
{
  if (NULL == root)
    return 0;
  int leftH = BTreeHeight(root->left);
  int rightH = BTreeHeight(root->right);
  return leftH > rightH ? leftH + 1 : rightH + 1;
}

4.5 二叉树查找值为x的节点 -- BinaryTreeFind

 

思想:依旧是分治思想,递归实现,要找节点值为x的节点,我们先看根节点是不是,再递归左右子树的每一个基点。

实现代码:

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
  if (NULL == root)
    return NULL;
  if (root->data == x)
    return root;
  BTNode* ret1 = BinaryTreeFind(root->left, x);
  if (ret1)
    return ret1;
  BTNode* ret2 = BinaryTreeFind(root->right, x);
  if (ret2)
    return ret2;
  return NULL;
}


运行结果:

相关文章
|
4月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
112 1
|
16天前
|
定位技术 C语言
c语言及数据结构实现简单贪吃蛇小游戏
c语言及数据结构实现简单贪吃蛇小游戏
|
2月前
|
搜索推荐 C语言
数据结构(C语言)之对归并排序的介绍与理解
归并排序是一种基于分治策略的排序算法,通过递归将数组不断分割为子数组,直到每个子数组仅剩一个元素,再逐步合并这些有序的子数组以得到最终的有序数组。递归版本中,每次分割区间为[left, mid]和[mid+1, right],确保每两个区间内数据有序后进行合并。非递归版本则通过逐步增加gap值(初始为1),先对单个元素排序,再逐步扩大到更大的区间进行合并,直至整个数组有序。归并排序的时间复杂度为O(n*logn),空间复杂度为O(n),且具有稳定性,适用于普通排序及大文件排序场景。
|
2月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
59 12
|
2月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
53 10
|
2月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
55 2
|
3月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
4月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
104 5
|
4月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
102 1
|
4月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
64 1