OpenCV加载深度学习模型:
# Caffe所需配置文件 net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", "bvlc_googlenet.caffemodel")
我们也可以使用Tensorflow或者其他的读取方式:
# 导入工具包 import utils_paths import numpy as np import cv2 # 标签文件处理 rows = open("synset_words.txt").read().strip().split("\n") classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows] # Caffe所需配置文件 net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", "bvlc_googlenet.caffemodel") # 图像路径 imagePaths = sorted(list(utils_paths.list_images("images/"))) # 图像数据预处理 image = cv2.imread(imagePaths[0]) resized = cv2.resize(image, (224, 224)) # image scalefactor size mean swapRB blob = cv2.dnn.blobFromImage(resized, 1, (224, 224), (104, 117, 123)) print("First Blob: {}".format(blob.shape)) # 得到预测结果 net.setInput(blob) preds = net.forward() # 排序,取分类可能性最大的 idx = np.argsort(preds[0])[::-1][0] text = "Label: {}, {:.2f}%".format(classes[idx], preds[0][idx] * 100) cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) # 显示 cv2.imshow("Image", image) cv2.waitKey(0) # Batch数据制作 images = [] # 方法一样,数据是一个batch for p in imagePaths[1:]: image = cv2.imread(p) image = cv2.resize(image, (224, 224)) images.append(image) # blobFromImages函数,注意有s blob = cv2.dnn.blobFromImages(images, 1, (224, 224), (104, 117, 123)) print("Second Blob: {}".format(blob.shape)) # 获取预测结果 net.setInput(blob) preds = net.forward() for (i, p) in enumerate(imagePaths[1:]): image = cv2.imread(p) idx = np.argsort(preds[i])[::-1][0] text = "Label: {}, {:.2f}%".format(classes[idx], preds[i][idx] * 100) cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Image", image) cv2.waitKey(0)
完整代码,后台回复 计算机视觉实战。还有一些啥目标检测和多目标追踪的代码都在里面。
我的微信公众号名称:深度学习与先进智能决策
微信公众号ID:MultiAgent1024
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!