零样本文本分类——低资源场景下文本分类的利器(1)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 零样本文本分类——低资源场景下文本分类的利器

笔者近期在使用一些开源算法解决低资源场景分类时,发现使用一些在modelscope社区上开源的零样本分类模型可以极大提高分类准确率,因此对零样本文本分类模型进行了梳理,希望对大家有所帮助~

模型传送门:

基于自然语言推理的零样本分类模型:StructBERT零样本分类-中文-base

基于文本生成的零样本分类模型:全任务零样本学习-mT5分类增强版-中文-base

为了更直观地体现零样本分类模型在低资源场景下的优势,下面我们先来看一个实际案例。



实际案例——工单分类

一些在线平台每天都会产生大量的问题工单,产研同学需要对这些工单进行归类和分析,进而定位问题、了解变化趋势并优化产品。由于产品的变化较快,因此产品的分类体系需要灵活调整,人工打标的方式无法满足日常的工单分析需求,费时费力。基于modelscope开源社区开放的领先算法模型,我们针对工单分类的需求,研发了分类算法,旨在帮助产研团队针对工单内容实现自动化归类,进而提升工单处理和产品迭代的效率。

在解决工单分类任务中,遇到的主要难点有:

  • 业务方初期可投入的人力资源有限
  • 有效的标注数据很少,存在平均每个类别只有不到10个样本的情况。
  • 常规的分类算法得到的模型效果非常之差,难以满足基本使用需求。

针对上述难点,我们选择了采用零样本分类模型进行算法的构建。通过零样本文本分类模型高质量建模工单文本与各个标签文本的相关性,再将预测结果进行整合排序,最终得到与工单文本最相关的标签。实验结果如下表所示,在3个低资源的工单分类任务上,该模型相较于普通分类模型均取得了明显的提升,其中:

  • 平台1:整体准确率从0.11提升至0.33,一级类别准确率从0.22提升至0.47,二级类别准确率从0.19提升至0.46
  • 平台2:整体准确率从0.13提升至0.64,一级类别准确率从0.46提升至0.70
  • 平台3:整体准确率从0.15提升至0.69,一级类别准确率从0.53提升至0.75

业务方

共性数据问题

分类模型(StructBERT-base)

零样本分类模型

StructBERT零样本分类-中文-base

云原生-ARMS

样本数量少,类别多,长尾分布占大多数,大量只有少于10个样本的类。

样本数:827

类别数:3层层级分类,铺平131类

效果: 整体acc 0.11,一级acc:0.22,二级acc:0.19

样本数:827

类别数:3层层级分类,铺平131类

效果: 整体acc: 0.33,一级acc: 0.47,二级acc: 0.46

计算平台-dataworks

样本数:612

类别数:2级层级分类,铺平64类

效果: 整体acc 0.13,一级acc 0.46

样本数:612

类别数:2层层级分类,铺平64类

效果: 整体acc: 0.64,一级acc: 0.70

计算平台-maxcompute

样本数:366

类别数:2级层级分类,铺平39类

效果: 整体acc 0.15,一级acc 0.53

样本数:366

类别数:2层层级分类,铺平39类

效果: 整体acc: 0.69,一级acc: 0.75

表1 零样本分类模型在实际业务中的表现

前言

零样本学习(Zero-Shot Learning)是一种机器学习范式,它使用在训练阶段从未学习过的样本和类别标签来测试模型。因此,零样本学习的模型应当具备一定的对从未学习过的分类任务直接进行预测的能力。机器学习(Machine Learning)已经在各个领域取得了广泛的应用,而其中分类是最基础的机器学习任务,它需要分析未分类数据,并确定如何将其归属到已知类别中。通常分类任务需要大量已知类别的数据来构建和训练模型,然而获取任何特定任务、特定领域的已标注数据都是一个非常昂贵且耗时的过程,这使得零样本学习最近变得越来越流行。

文本分类(Text Classification)是自然语言处理(NLP)领域中的一种任务,它指的是将文本数据(如新闻文章、电子邮件或社交媒体帖子)自动分配到一个或多个预定义的类别(如政治、体育、娱乐等)中。这可以通过训练机器学习模型来实现,该模型可以根据文本的词汇、语法等特征来预测它的类别。

零样本文本分类(Zero-Shot Text Classification)是一种文本分类方法,其优势在于它不需要任何预先标记的训练样本来分类文本。 这意味着,即使在缺乏预先标记的数据的情况下,也可以对文本进行分类。传统的文本分类方法需要大量预先标记的训练样本来训练模型,但在实际应用中,很难收集到足够的预先标记的样本。 因此,零样本文本分类可以作为一种替代方案,以便在缺乏预先标记的数据的情况下进行文本分类。图1展示了零样本分类的测试效果,从图中不难发现,零样本分类模型可以支持标签的自定义,从而使得可以对任何文本分类任务进行推理。image.png

图1 零样本分类模型用例测试

常见的零样本分类模型主要可以分为以下两类。

  • 基于自然语言推理的模型
  • 模型特点:在训练阶段仅使用NLI相关数据集进行训练,在进行零样本分类时,需要将样本转换成nli样本形式。
  • 模型优势:进行推理时,在各种分类任务上的表现比较均衡,受到训练数据的影响较小,分类结果稳定。
  • 模型缺点:每次推理时都需要推理n个样本(其中n为标签数量),模型推理时间随标签数量线性增长。
  • 基于文本生成的模型
  • 模型特点:需要设计prompt来结合文本和标签,让模型生成文本对应的标签。
  • 模型优势:推理效率较高,每次推理只需要推理1个样本。
  • 模型缺点:由于是生成模型,生成的结果可能不稳定,即生成的文本不存在与候选标签中。同时该模型在训练时使用了大量文本分类数据集进行训练,因此在不同分类任务上表现出的性能可能存在较大差异。

下面我们将对这两个模型分别进行介绍。



基于自然语言推理的零样本文本分类模型

该系列模型基于StructBERT[1]在xnli_zh数据集(将英文数据集重新翻译得到的中文数据集)上面进行训练得到。

自然语言推理(Natural Language Inference, NLI)是指利用自然语言的语法和语义知识来判断一个给定的文本片段(如两个句子)的关系,例如它们是否是矛盾、是否相关或是否是一个是另一个的后续。而使用预训练的自然语言推理模型来实现零样本分类的方式,如图2所示,是将要分类的文本设置为自然语言推理的前提,然后使用每个标签构建一个假设,接着对每个假设进行推理得到文本所属的标签,即去判断给定文本片段与给定的标签之间的关系。

image.png

图2 基于NLI的零样本分类模型图

相关文章
|
8月前
|
机器学习/深度学习 算法 Python
【Python机器学习】分类算法任务、分类模型评价指标详解(图文解释)
【Python机器学习】分类算法任务、分类模型评价指标详解(图文解释)
230 0
|
机器学习/深度学习 人工智能 自然语言处理
基于非英语数据集的图形机器学习和集成学习方法增强文本分类和文本情感分析
基于非英语数据集的图形机器学习和集成学习方法增强文本分类和文本情感分析 摘要 近年来,机器学习方法,特别是图学习方法,在自然语言处理领域,特别是文本分类任务中取得了巨大的成果。然而,许多这样的模型在不同语言的数据集上显示出有限的泛化能力。在本研究中,我们在非英语数据集(如波斯语Digikala数据集)上研究并阐述了图形机器学习方法,该方法由用户对文本分类任务的意见组成。更具体地说,我们研究了(Pars)BERT与各种图神经网络(GNN)架构(如GCN、GAT和GIN)的不同组合,并使用集成学习方法来处理某些知名的非英语数据集上的文本分类任务。我们的分析和结果表明,应用GNN模型可以更好地捕捉文
125 0
|
7月前
|
机器学习/深度学习 人工智能 监控
【机器学习】大模型驱动少样本学习在图像识别中的应用
【机器学习】大模型驱动少样本学习在图像识别中的应用
177 0
|
8月前
|
机器学习/深度学习 数据采集 存储
使用机器学习算法进行文本分类的方法与实践
本文将介绍使用机器学习算法进行文本分类的方法与实践。通过分析文本特征、选择合适的机器学习算法和构建有效的训练模型,可以实现准确和高效的文本分类任务。我们还将探讨如何处理文本数据预处理、特征提取和模型评估等方面的关键问题,以帮助读者更好地应用机器学习技术解决文本分类挑战。
|
8月前
|
机器学习/深度学习 自然语言处理 算法
如何利用机器学习算法提高分类准确率
【2月更文挑战第7天】机器学习在现代科技中扮演着重要的角色。分类是其中一种基本的机器学习任务,而分类准确率是衡量分类模型好坏的重要指标。本文将介绍如何利用机器学习算法来提高分类准确率。
119 0
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch搭建循环神经网络(RNN)进行文本分类、预测及损失分析(对不同国家的语言单词和姓氏进行分类,附源码和数据集)
PyTorch搭建循环神经网络(RNN)进行文本分类、预测及损失分析(对不同国家的语言单词和姓氏进行分类,附源码和数据集)
379 1
|
机器学习/深度学习 自然语言处理
【文本分类】《基于提示学习的小样本文本分类方法》
使用P-turning提示学习,进行小样本文本分类。本文值得学习。
212 0
|
机器学习/深度学习 自然语言处理
文本分类(上)- 基于传统机器学习方法进行文本分类
文本分类(上)- 基于传统机器学习方法进行文本分类
438 0
|
缓存 自然语言处理 测试技术
零样本文本分类——低资源场景下文本分类的利器(2)
零样本文本分类——低资源场景下文本分类的利器
|
机器学习/深度学习 自然语言处理 数据挖掘
【英文文本分类实战】之六——模型与训练-评估-测试
【英文文本分类实战】之六——模型与训练-评估-测试
195 0
【英文文本分类实战】之六——模型与训练-评估-测试

热门文章

最新文章