【MATLAB第56期】#源码分享 | 基于MATLAB的机器学习算法单输入多输出分类预测模型思路(回归改分类)

简介: 因上一步骤进行了正常的回归预测,输出一般为小数点,且不是限定标签的数值。所以需要通过find函数,将回归预测的输出结果进行分段赋值。若涉及多隐含层,可修改[20,20,5]中的数字。前2个20代表两层隐含层的神经元数 ,后面的5为输出节点,根据本案例数据设置。输出分为五个指标,每个指标共4个评分维度,即【0 10 20 30】归一化区间可自行设置,默认[-1,1],本文采用[0,1]根据四舍五入的思路,如数据如果在5以下,则赋值为0,数据为1输入,5输出,总共482个样本。如果为[5,15),赋值为10…

【MATLAB第56期】#源码分享 | 基于MATLAB的机器学习算法单输入多输出分类预测模型思路(回归改分类)

针对单输入多输出分类预测,可采用回归的方式进行预测。
本文采用BP神经网络进行演示。

一、导入数据

e035de0384857890a28dcaf324a29422_9ea31e96f2da49a28dd531cf70d8ac3f.png

数据为1输入,5输出,总共482个样本。
输出分为五个指标,每个指标共4个评分维度,即【0 10 20 30】

%%  导入数据
load data

二、数据样本划分

保持样本均匀多样性,可将数据打乱。

temp = randperm(size(data,1));%打乱数据顺序

若不需要打乱,上面代码改成:

temp = 1:size(data,1):;%不打乱数据

训练样本数量可自行设置 ,本文设置为422。
代码如下:

%%  划分训练集和测试集
temp = randperm(size(data,1));%打乱数据顺序

NN=422;%训练数量
P_train = data(temp(1: NN), 6 )';%422个数据为训练,剩余为测试,第6列y为输入
T_train = data(temp(1: NN), 1: 5)';%x为输出
M = size(P_train, 2);

P_test = data(temp(NN+1: end), 6 )';
T_test = data(temp(NN+1: end), 1: 5)';
N = size(P_test, 2);

三、归一化设置

常用归一化有两种,即最大最小值归一化及标准值归一化。

method=@mapminmax;%最大最小值归一化
method=@mapstd;%标准值归一化

归一化区间可自行设置,默认[-1,1],本文采用[0,1]

%%  数据归一化
method=@mapstd;
[p_train, ps_input] = method(P_train, 0, 1);
p_test = method('apply', P_test, ps_input);

[t_train, ps_output] = method(T_train, 0, 1);
t_test = method('apply', T_test, ps_output);

四、模型创建及预测

熟悉的BP网络建模过程,不多介绍。
若涉及多隐含层,可修改[20,20,5]中的数字。前2个20代表两层隐含层的神经元数 ,后面的5为输出节点,根据本案例数据设置。
若增加或者减少隐含层,需要更改后面对应的激活函数。

net = newff(minmax(p_train), [20,20,5],{
   
   'logsig','logsig','purelin'});

代码如下:

%%  创建网络
%net = newff(minmax(p_train), t_train, 10);
net = newff(minmax(p_train), [20,20,5],{
   
   'logsig','logsig','purelin'});
%%  设置训练参数
net.trainParam.epochs = 2000;     % 迭代次数 
net.trainParam.goal = 1e-7;       % 误差阈值
net.trainParam.lr = 0.01;         % 学习率
net.trainFcn = 'trainlm';

%%  训练网络
net = train(net, p_train, t_train);

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = method('reverse', t_sim1, ps_output);
T_sim2 = method('reverse', t_sim2, ps_output);

五、分类预测结果

因上一步骤进行了正常的回归预测,输出一般为小数点,且不是限定标签的数值。所以需要通过find函数,将回归预测的输出结果进行分段赋值。
根据四舍五入的思路,如数据如果在5以下,则赋值为0,
如果为[5,15),赋值为10...
依次进行赋值。

for i = 1: 5
[m1,n1]=find(T_sim(i,:)<5);T_sim1(i,n1)=0;
[m2,n2]=find(T_sim(i,:)<15 & T_sim1(i,:)>=5);T_sim1(i,n2)=10;
end

六、评价指标及绘图

bd63c687f4e3ac1225cb234520fa33d6_58e3c06ca8a94d02b44a4dc6ce95a7e4.png



%%  绘图
figure
subplot(2, 1, 1)
plot(1: M, T_train(i, :), 'r-*', 1: M, T_sim1(i, :), 'b-o', 'LineWidth', 1)
legend(['x' num2str(i) '真实值'],['x' num2str(i) '预测值'])
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '训练集预测结果对比'; ['准确率acc=' num2str(acc1(i, :))]};
title(string)
xlim([1, M])
grid

subplot(2, 1, 2)
plot(1: N, T_test(i, :), 'r-*', 1: N, T_sim2(i, :), 'b-o', 'LineWidth', 1)
legend(['x' num2str(i) '真实值'],['x' num2str(i) '预测值'])
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '测试集预测结果对比';['准确率acc=' num2str(acc2(i, :))]};
title(string)
xlim([1, N])
grid

%%  分割线
disp('**************************')
disp(['下列是输出', num2str(i)])
disp('**************************')



end

七、测试新数据

若输入为一个新值,则预测结果参考下列代码:

%% 测试新数据
p_newtest=21.6;% 输入新数据
p_newtest1 = method('apply',p_newtest, ps_input);
t_simnew = sim(net, p_newtest1);

T_simnew = method('reverse', t_simnew , ps_output);

T_simnew

八、代码获取

后台私信回复“56期”,可获取下载链接。

相关文章
|
14天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
28 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
17天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
122 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
6天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
42 18
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
7天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
40 14
|
3天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
18 4
|
1月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
99 3
|
1月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
58 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
161 4

热门文章

最新文章