【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的QOWOA优化LSTM时间序列预测模型,优势明显,注释详细,绘图丰富
一、代码优势
1.使用优化后的QOWOA算法优化LSTM超参数(学习率,隐藏层节点,正则化系数,训练次数)
2.目标函数考虑训练集和测试集,更加合理;运行结果稳定,可直接调用结果,且调用结果非常方便。
3.滑动窗口方法处理单列时间序列数据,考虑历史数据的影响。
4.代码一体化,一键运行;注释丰富,评价指标丰富,逻辑清晰,适合小白学习。
5.代码绘图丰富(除基础绘图以外,还包括训练LOSS图、超参数迭代图)、美观
6.命令行窗口可见运行过程的结果.
7.参数可在代码中设置,方便调试;优化超参数可以根据需求更改 。
二、后期研究计划
后续将在博文中更新更丰富、功能更完整的作品,敬请期待。
1.多层LSTM结构优化,含单向LSTM/GRU和双向Bilstm混合模型
2.更多超参数优化,含结构层数量、隐含层节点数、最小批处理数量、时间步数等
3.含预测未来功能
4.更多新的算法以及在基础上改进算法对比。
5.loss内置函数修改
6.多场景应用(分类、回归、多输入多输出等等)
三、代码展示
%% 1.清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 2.导入数据(时间序列的单列数据) result = xlsread('数据集.xlsx'); %% 3.数据分析 num_samples = length(result); % 样本个数 kim = 15; % 延时步长(kim个历史数据作为自变量) zim = 1; % 跨zim个时间点进行预测 %% 4.划分数据集 for i = 1: num_samples - kim - zim + 1 res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)]; end %% 5.数据集分析 outdim = 1; % 最后一列为输出 num_size = 0.7; % 训练集占数据集比例 num_train_s = round(num_size * num_samples); % 训练集样本个数 f_ = size(res, 2) - outdim; % 输入特征维度 %% 6.划分训练集和测试集 P_train = res(1: num_train_s, 1: f_)'; T_train = res(1: num_train_s, f_ + 1: end)'; M = size(P_train, 2); P_test = res(num_train_s + 1: end, 1: f_)'; T_test = res(num_train_s + 1: end, f_ + 1: end)'; N = size(P_test, 2); %% 7.数据归一化 [P_train, ps_input] = mapminmax(P_train, 0, 1); P_test = mapminmax('apply', P_test, ps_input); [t_train, ps_output] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 8.数据平铺 % 将数据平铺成1维数据只是一种处理方式 % 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构 % 但是应该始终和输入层数据结构保持一致 P_train = double(reshape(P_train, f_, 1, 1, M)); P_test = double(reshape(P_test , f_, 1, 1, N)); t_train = t_train'; t_test = t_test' ; %% 9.数据格式转换 for i = 1 : M p_train{i, 1} = P_train(:, :, 1, i); end for i = 1 : N p_test{i, 1} = P_test( :, :, 1, i); end %% 10.优化算法参数设置 SearchAgents_no = 5; % 种群数量 Max_iteration = 5; % 最大迭代次数 dim = 4; % 优化参数个数 lb = [1e-3, 10, 1e-4,20]; % 参数取值下界(学习率,隐藏层节点,正则化系数,训练次数) ub = [1e-2, 80, 1e-3,100]; % 参数取值上界(学习率,隐藏层节点,正则化系数,训练次数) fobj=@(x)fun(x); %适应度函数 %% 11.优化算法初始化 [Best_sol,Best_X,Convergence,BestNet,pos_curve]=QOWOA(SearchAgents_no,dim,Max_iteration,lb,ub,fobj) %% 12.优化前LSTM运行结果 [fitness1,net1,res1,info1] = fun([0.005,50,0.005,50]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数) predict_value1=res1.predict_value1; predict_value2=res1.predict_value2; true_value1=res1.true_value1; true_value2=res1.true_value2; i=1; disp('-------------------------------------------------------------') disp('LSTM结果:') rmse1=sqrt(mean((true_value1(i,:)-predict_value1(i,:)).^2)); disp(['LSTM训练集根均方差(RMSE):',num2str(rmse1)]) mae1=mean(abs(true_value1(i,:)-predict_value1(i,:))); disp(['LSTM训练集平均绝对误差(MAE):',num2str(mae1)]) mape1=mean(abs((true_value1(i,:)-predict_value1(i,:))./true_value1(i,:))); disp(['LSTM训练集平均相对百分误差(MAPE):',num2str(mape1*100),'%']) r2_1=R2(true_value1(i,:),predict_value1(i,:)); disp(['LSTM训练集R-square决定系数(R2):',num2str(r2_1)]) rmse2=sqrt(mean((true_value2(i,:)-predict_value2(i,:)).^2)); disp(['LSTM测试集根均方差(RMSE):',num2str(rmse2)]) mae2=mean(abs(true_value2(i,:)-predict_value2(i,:))); disp(['LSTM测试集平均绝对误差(MAE):',num2str(mae2)]) mape2=mean(abs((true_value2(i,:)-predict_value2(i,:))./true_value2(i,:))); disp(['LSTM测试集平均相对百分误差(MAPE):',num2str(mape2*100),'%']) r2_2=R2(true_value2(i,:),predict_value2(i,:)); disp(['LSTM测试集R-square决定系数(R2):',num2str(r2_2)]) %% 13. LSTM绘图 %% 14.优化后WOA-LSTM运行结果 [fitness2,net2,res2,info2] = fun(Best_X); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数) %% 15.WOA-LSTM绘图 %% 16.QOWOA-LSTM运行结果 %% 17.QOWOA-LSTM绘图
四、运行结果
LSTM结果:
LSTM训练集根均方差(RMSE):0.023407
LSTM训练集平均绝对误差(MAE):0.01781
LSTM训练集平均相对百分误差(MAPE):2.9834%
LSTM训练集R-square决定系数(R2):0.95768
LSTM测试集根均方差(RMSE):0.024046
LSTM测试集平均绝对误差(MAE):0.01902
LSTM测试集平均相对百分误差(MAPE):3.2605%
LSTM测试集R-square决定系数(R2):0.78619
QOWOA-LSTM结果:
QOWOA-LSTM优化得到的最优参数为:
QOWOA-LSTM优化得到的隐藏单元数目为:42
QOWOA-LSTM优化得到的最大训练周期为:88
QOWOA-LSTM优化得到的InitialLearnRate为:0.0050054
QOWOA-LSTM优化得到的L2Regularization为:0.00058159
QOWOA-LSTM训练集根均方差(RMSE):0.012849
QOWOA-LSTM训练集平均绝对误差(MAE):0.0095498
QOWOA-LSTM训练集平均相对百分误差(MAPE):1.5737%
QOWOA-LSTM训练集R-square决定系数(R2):0.9858
QOWOA-LSTM测试集根均方差(RMSE):0.014634
QOWOA-LSTM测试集平均绝对误差(MAE):0.011312
QOWOA-LSTM测试集平均相对百分误差(MAPE):1.9105%
QOWOA-LSTM测试集R-square决定系数(R2):0.91914
五、代码获取
后台私信回复“36期”即可获取下载链接。
文章知识点与官方知识档案匹配,可进一