【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的WOA优化LSTM时间序列预测模型 优势明显,注释详细,绘图丰富

简介: 【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的WOA优化LSTM时间序列预测模型 优势明显,注释详细,绘图丰富

【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的QOWOA优化LSTM时间序列预测模型,优势明显,注释详细,绘图丰富


一、代码优势


1.使用优化后的QOWOA算法优化LSTM超参数(学习率,隐藏层节点,正则化系数,训练次数)

2.目标函数考虑训练集和测试集,更加合理;运行结果稳定,可直接调用结果,且调用结果非常方便。

3.滑动窗口方法处理单列时间序列数据,考虑历史数据的影响。

4.代码一体化,一键运行;注释丰富,评价指标丰富,逻辑清晰,适合小白学习。

5.代码绘图丰富(除基础绘图以外,还包括训练LOSS图、超参数迭代图)、美观

6.命令行窗口可见运行过程的结果.

7.参数可在代码中设置,方便调试;优化超参数可以根据需求更改 。


二、后期研究计划


后续将在博文中更新更丰富、功能更完整的作品,敬请期待。

1.多层LSTM结构优化,含单向LSTM/GRU和双向Bilstm混合模型

2.更多超参数优化,含结构层数量、隐含层节点数、最小批处理数量、时间步数等

3.含预测未来功能

4.更多新的算法以及在基础上改进算法对比。

5.loss内置函数修改

6.多场景应用(分类、回归、多输入多输出等等)


三、代码展示

%%  1.清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  2.导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');
%%  3.数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
%%  4.划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%%  5.数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  6.划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  7.数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  8.数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';
t_test  = t_test' ;
%%  9.数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end
%%  10.优化算法参数设置
SearchAgents_no = 5;                   % 种群数量
Max_iteration = 5;                    % 最大迭代次数
dim = 4;                               % 优化参数个数
lb = [1e-3, 10, 1e-4,20];                 % 参数取值下界(学习率,隐藏层节点,正则化系数,训练次数)
ub = [1e-2, 80, 1e-3,100];                 % 参数取值上界(学习率,隐藏层节点,正则化系数,训练次数)
fobj=@(x)fun(x);  %适应度函数
%%  11.优化算法初始化
[Best_sol,Best_X,Convergence,BestNet,pos_curve]=QOWOA(SearchAgents_no,dim,Max_iteration,lb,ub,fobj)
%% 12.优化前LSTM运行结果
[fitness1,net1,res1,info1] =  fun([0.005,50,0.005,50]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
predict_value1=res1.predict_value1;
predict_value2=res1.predict_value2;
true_value1=res1.true_value1;
true_value2=res1.true_value2;
i=1;
disp('-------------------------------------------------------------')
disp('LSTM结果:')
rmse1=sqrt(mean((true_value1(i,:)-predict_value1(i,:)).^2));
disp(['LSTM训练集根均方差(RMSE):',num2str(rmse1)])
mae1=mean(abs(true_value1(i,:)-predict_value1(i,:)));
disp(['LSTM训练集平均绝对误差(MAE):',num2str(mae1)])
mape1=mean(abs((true_value1(i,:)-predict_value1(i,:))./true_value1(i,:)));
disp(['LSTM训练集平均相对百分误差(MAPE):',num2str(mape1*100),'%'])
r2_1=R2(true_value1(i,:),predict_value1(i,:));
disp(['LSTM训练集R-square决定系数(R2):',num2str(r2_1)])
rmse2=sqrt(mean((true_value2(i,:)-predict_value2(i,:)).^2));
disp(['LSTM测试集根均方差(RMSE):',num2str(rmse2)])
mae2=mean(abs(true_value2(i,:)-predict_value2(i,:)));
disp(['LSTM测试集平均绝对误差(MAE):',num2str(mae2)])
mape2=mean(abs((true_value2(i,:)-predict_value2(i,:))./true_value2(i,:)));
disp(['LSTM测试集平均相对百分误差(MAPE):',num2str(mape2*100),'%'])
r2_2=R2(true_value2(i,:),predict_value2(i,:));
disp(['LSTM测试集R-square决定系数(R2):',num2str(r2_2)])
%% 13. LSTM绘图
%% 14.优化后WOA-LSTM运行结果  
[fitness2,net2,res2,info2] =  fun(Best_X); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
%% 15.WOA-LSTM绘图
%% 16.QOWOA-LSTM运行结果
%% 17.QOWOA-LSTM绘图


四、运行结果


LSTM结果:

LSTM训练集根均方差(RMSE):0.023407

LSTM训练集平均绝对误差(MAE):0.01781

LSTM训练集平均相对百分误差(MAPE):2.9834%

LSTM训练集R-square决定系数(R2):0.95768

LSTM测试集根均方差(RMSE):0.024046

LSTM测试集平均绝对误差(MAE):0.01902

LSTM测试集平均相对百分误差(MAPE):3.2605%

LSTM测试集R-square决定系数(R2):0.78619


QOWOA-LSTM结果:

QOWOA-LSTM优化得到的最优参数为:

QOWOA-LSTM优化得到的隐藏单元数目为:42

QOWOA-LSTM优化得到的最大训练周期为:88

QOWOA-LSTM优化得到的InitialLearnRate为:0.0050054

QOWOA-LSTM优化得到的L2Regularization为:0.00058159

QOWOA-LSTM训练集根均方差(RMSE):0.012849

QOWOA-LSTM训练集平均绝对误差(MAE):0.0095498

QOWOA-LSTM训练集平均相对百分误差(MAPE):1.5737%

QOWOA-LSTM训练集R-square决定系数(R2):0.9858

QOWOA-LSTM测试集根均方差(RMSE):0.014634

QOWOA-LSTM测试集平均绝对误差(MAE):0.011312

QOWOA-LSTM测试集平均相对百分误差(MAPE):1.9105%

QOWOA-LSTM测试集R-square决定系数(R2):0.91914


五、代码获取


后台私信回复“36期”即可获取下载链接。

文章知识点与官方知识档案匹配,可进一

相关文章
|
13天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
10天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
16天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
26天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
21天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
24天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
33 2
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。