GPT-4是8x2200亿参数的混合模型?这个小道消息今天传疯了

简介: GPT-4是8x2200亿参数的混合模型?这个小道消息今天传疯了


George Hotz:除了苹果之外,大部分公司保密的原因都不是在隐藏什么黑科技,而是在隐藏一些「不那么酷」的东西。


「GPT-4 的参数量高达 100 万亿。」相信很多人还记得这个年初刷屏的「重磅」消息和一张被病毒式传播的图表。

不过很快,OpenAI 的 CEO Sam Altman 就出来辟谣,证实这是一条假消息,并表示,「关于 GPT-4 的谣言都很荒谬。我甚至不知道这从何而起。」

实际上,许多人相信并传播这样的谣言是因为近年来 AI 社区不断在增加 AI 模型的参数规模。谷歌在 2021 年 1 月发布的 Switch Transformer 就把 AI 大模型参数量拉高到了 1.6 万亿。在此之后,很多机构也陆续推出了自己的万亿参数大模型。据此,人们有充分的理由相信,GPT-4 将是一个万亿参数的巨量模型,100 万亿参数也不是不可能。

虽然 Sam Altman 的辟谣帮我们去掉了一个错误答案,但他背后的 OpenAI 团队一直对 GPT-4 的真实参数量守口如瓶,就连 GPT-4 的官方技术报告也没透露任何信息。

直到最近,这个谜团疑似被「天才黑客」乔治・霍兹(George Hotz)捅破了。

乔治・霍兹因 17 岁破解 iPhone、21 岁攻陷索尼 PS3 而闻名,目前是一家研发自动驾驶辅助系统的公司(comma.ai)的老板。

最近,他接受了一家名为 Latent Space 的 AI 技术播客的采访。在采访中,他谈到了 GPT-4,称 GPT-4 其实是一个混合模型。具体来说,它采用了由 8 个专家模型组成的集成系统,每个专家模型都有 2200 亿个参数(比 GPT-3 的 1750 亿参数量略多一些),并且这些模型经过了针对不同数据和任务分布的训练。

在这段播客播出之后,PyTorch 创建者 Soumith Chintala 表示自己似乎听过同样的「传闻」,很多人可能也听过,但只有 George Hotz 在公开场合将其说了出来。

「混合模型是你在无计可施的时候才会考虑的选项,」George Hotz 调侃说,「混合模型的出现是因为无法让模型的参数规模超过 2200 亿。他们希望模型变得更好,但如果仅仅是训练时间更长,效果已经递减。因此,他们采用了八个专家模型来提高性能。」至于这个混合模型是以什么形式工作的,George Hotz 并没有详细说明。

为什么 OpenAI 对此讳莫如深呢?George Hotz 认为,除了苹果之外,大部分公司保密的原因都不是在隐藏什么黑科技,而是在隐藏一些「不那么酷」的东西,不想让别人知道「只要花 8 倍的钱你也能得到这个模型」。

对于未来的趋势,他认为,人们会训练规模较小的模型,并通过长时间的微调和发现各种技巧来提升性能。他提到,与过去相比,训练效果已经明显提升,尽管计算资源没有变化,这表明训练方法的改进起到了很大作用。

目前,George Hotz 关于 GPT-4 的「爆料」已经在推特上得到了广泛传播。

有人从中得到了灵感,声称要训练一个 LLaMA 集合来对抗 GPT-4。

还有人说,如果真的像 George Hotz 说的那样,GPT-4 是一个由 8 个 2200 亿参数的专家模型组合的混合模型,那很难想象背后的推理成本有多高。

需要指出的是,由于 George Hotz 并未提及消息来源,我们目前无法判断以上论断是否正确。有更多线索的读者欢迎在评论区留言。

,时长01:23:23

George Hotz 采访内容。GPT-4 相关内容在 49:00 前后。视频来源:https://www.youtube.com/watch?v=K5iDUZPx60E&t=3030s

参考链接:https://twitter.com/soumithchintala/status/1671267150101721090

相关文章
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
502 2
|
9月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
396 17
|
7月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
7月前
|
人工智能 数据挖掘 API
Kimi K2开源炸场,1万亿参数碾压GPT-4.1,成本仅Claude 4的1/5!
月之暗面开源的万亿参数大模型Kimi K2引发行业震动,48小时内即登顶OpenRouter API调用榜,GitHub项目激增200%。该模型在代码生成、Agent任务及中文创作上超越Claude 4,标志着中国大模型首次在三大核心能力上达到全球顶尖水平。
|
10月前
|
机器学习/深度学习 人工智能 前端开发
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
Meta最新开源的SWEET-RL框架通过优化多轮交互任务的信用分配机制,使Llama-3.1-8B模型在协作推理任务中的表现提升6%,性能达到顶尖大模型水平。
541 33
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
540 4
|
11月前
|
机器学习/深度学习 人工智能 开发者
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
GPT-4o-mini-transcribe 是 OpenAI 推出的语音转文本模型,基于 GPT-4o-mini 架构,采用知识蒸馏技术,适合在资源受限的设备上运行,具有高效、实时和高性价比的特点。
713 2
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
|
11月前
|
人工智能 自然语言处理 语音技术
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
GPT-4o mini TTS 是 OpenAI 推出的轻量级文本转语音模型,支持多语言、多情感控制,适用于智能客服、教育学习、智能助手等多种场景。
708 2
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈

热门文章

最新文章