Windows下如何配置TensorFlow?这有个简单明了的教程(支持GPU哦)

简介: 本文简单介绍如何在windows系统下配置TensorFlow并能使用GPU进行加速运算的过程,文章通俗易懂,更新及时。

首发地址:https://yq.aliyun.com/articles/68435

TensorFlow谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。TensorFlow可被用于语音识别图像识别等多项机器深度学习领域

   下面是在windows系统下安装TensorFlow深度学习工具箱的教程,作者为Jeff Heaton,主要研究方向是机器学习、预测建模以及这些方面的应用。

1df910508b2aaf5bb213bdf10629456d8bf6762d

TensorFlow现在可用于Windows系统同样也适用于Mac和Linux。这并非总是如此。对于大多数TensorFlow存在第一年Windows支持的唯一方式是虚拟,通常是通过Docker。即使没有GPU支持,这对我来说是个好消息。我教的深度学习研究生课程对于仅运行Windows的学生而言是很困难的。

使用GPU进行深度学习被广泛告知为高度有效。显然,非常高端的GPU集群可以通过深度学习做一些惊人的事情。然而,我很好奇Windows Surface Book(GPU:GeForce GT 940)使用GPUCPU的性能对比。事实证明使用GPU比CPU性能高的很多

CPU Version of TensorFlow: 1 hour, 54 minutes.
GPU Version of TensorFlow: 13 minutes

更新的Surface Book拥有更先进的GPU(GeForce GT 965)。去年,Mac和Windows之间的TensorFlow领域真的发生大变化。当TensorFlow首次发布时没有Windows版本,但现在NVidia CUDA针对深入学习有着很大兴趣的发展。

安装

首先,你应该确保你已经安装了正确的NVidia驱动程序:

CUDA驱动程序

CUDNN-CUDA深层神经网络

安装TensorFlow到Windows Python,TensorFlow需要Python2.7、3.4或3.5版本。我使用的是Anaconda Python3.5。我所做第一件事就是为TensorFlow创建CPU和GPU环境。这使他们与我有其他非深入学习Python环境分开。创建CPU TensorFlow环境:

conda create --name tensorflow python=3.5
activate tensorflow
conda install jupyter
conda install scipy
pip install tensorflow

创建GPU TensorFlow环境:

conda create --name tensorflow-gpu python=3.5
activate tensorflow-gpu
conda install jupyter
conda install scipy
pip install tensorflow-gpu

使用单个GPU时,你的TensorFlow代码不会被更改。你可以通过切换环境简单地运行相同的代码。TensorFlow使用GPU或不使用,这取决于你所处的环境。您可以在以下环境之间切换:

activate tensorflow
activate tensorflow-gpu

结论

如果你在本地计算机上做中等深度学习网络和数据集,你应该使用你的GPU。即使你正在使用一台笔记本电脑。NVidia是科学计算的首选GPU。虽然AMD可能完全有能力,但对AMD的支持却很稀少。


       本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。


文章原标题《Using TensorFlow in Windows with a GPU》,作者:Jeff Heaton,译者:海棠

      文章为简译,更为详细的内容,请查看原文

翻译者: 海棠 

Wechat:269970760 

Email:duanzhch@tju.edu.cn

微信公众号:AI科技时讯

157f33dddfc596ede3681e0a2a0e7068dc288cc1

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
3月前
|
Dart 搜索推荐 IDE
Windows下Zed编辑器配置Dart环境
本文介绍了Dart编程语言及其主要框架Flutter的优势,并推荐使用轻量级编辑器Zed进行Dart开发。详细步骤包括Dart环境的安装与配置,Zed编辑器的安装与个性化设置,以及如何在Zed中编写并运行Dart的HelloWorld程序。通过自定义任务实现Dart文件的快速运行,提高了开发效率。
|
3月前
|
监控 安全 网络安全
Windows Server管理:配置与管理技巧
Windows Server管理:配置与管理技巧
140 3
|
3月前
|
存储 负载均衡 Java
如何配置Windows主机MPIO多路径访问存储系统
Windows主机多路径(MPIO)是一种技术,用于在客户端计算机上配置多个路径到存储设备,以提高数据访问的可靠性和性能。本文以Windows2012 R2版本为例介绍如何在客户端主机和存储系统配置多路径访问。
195 13
如何配置Windows主机MPIO多路径访问存储系统
|
4月前
|
弹性计算 关系型数据库 数据安全/隐私保护
阿里云国际版如何配置Windows服务器的虚拟内存
阿里云国际版如何配置Windows服务器的虚拟内存
|
6月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
80 0
|
6月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
149 0
|
6月前
|
网络安全 Windows
在Windows电脑上启动并配置SSH服务
在Windows电脑上启动并配置SSH服务
1487 0
|
6月前
|
Ubuntu Linux 数据安全/隐私保护
在 Windows 中配置 WSL2 与 Debian 的全流程
【8月更文挑战第27天】本文详细介绍了在Windows环境中配置WSL2与Debian的全过程,包括确认Windows版本、启用相关功能、安装WSL并设置版本为WSL2、下载安装Debian、配置国内镜像源,以及设置Xserver实现GUI功能。通过这些步骤,用户能够顺利完成配置,并进行基本优化。
912 0
|
4天前
|
机器学习/深度学习 存储 弹性计算
阿里云gpu云服务器租用价格:最新收费标准及活动价格参考
阿里云gpu云服务器多少钱?A10卡GN7i GPU云服务器32核188G3213.99/1个月起,V100卡GN6v GPU云服务器8核32G3830.00/1个月起,阿里云GPU云服务器是基于GPU应用的计算服务,多适用于视频解码,图形渲染,深度学习,科学计算等应用场景,该产品具有超强计算能力、网络性能出色、购买方式灵活、高性能实例存储( GA1和GN5特有)等特点。下面小编来介绍下阿里云gpu云服务器最新的收费标准及活动价格。
|
4天前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)

热门文章

最新文章