基于阿里云 Serverless 容器服务轻松部署企业级 AI 应用

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 基于阿里云 Serverless 容器服务轻松部署企业级 AI 应用

作者:元毅、坤仑


数禾科技 AI 模型服务基于云原生架构,为不同业务环节提供智能决策支持。随着业务的快速发展,摆在数禾面前的难题是支撑模型计算的底层应用资源无法根据请求量来调整机器资源支持运算能力。同时,随着模型在线推理服务数量的增加,数禾的模型服务也变得越来越庞大、臃肿,难以管理。这种状况不仅导致了资源浪费,还增加了维护和升级的成本。


为了解决这些“顽疾”,数禾科技采用阿里云 ASK 部署线上模型,无需 K8s 节点管理,根据实时流量动态使用 POD,资源成本节省 60%;通过 ASK Knative 服务,解决了数模型的灰度发布和多版本并存问题;得益于ASK 自动伸缩和缩容到 0 的优势,降低运行成本,大幅提升服务可用性。


目前,该系统已上线部署 500+AI 模型服务,每天能够提供上亿次查询决策服务,具备无限横向扩展的能力。同时,数禾科技 AI 模型服务支持自动调整容量,满足不同业务压力下的需求,从而保障业务的稳定运行。不仅如此,采用云原生架构方案,平均部署周期由之前的1天缩短至 0.5天,大幅提升了研发迭代效率,从而加速商业化应用的进程,为金融业务提供新的增长动力。


关于 Serverless Kubernetes(ASK)


Kubernetes(K8s)作为一个开源容器编排系统,被广泛运用于云原生应用的开发与管理。其优势在于降低运维成本,提高运维效率,形成了以 K8s 为核心的云原生生态。然而使用 K8s 常常需要用户面对的问题较多,例如资源规划、容量规划、Node 与 Pod 的亲和关系、容器网络规划、节点生命周期管理、操作系统版本、容器运行时版本兼容性等,这些问题显然不是用户所希望关心的,用户期望做的事情是专注在自身的业务逻辑,尽可能不关心这些基础设施。Serverless 的核心理念在于让开发者更聚焦业务逻辑,减少对基础设施的关注。因此我们将 K8s 复杂性下沉,提供 Serverless Kubernetes 的产品能力。



那么 Serverless Kubernetes 有哪些优势呢?主要包括以下三个方面:免运维、自动弹性、按需付费。


首先,Serverless Kubernetes 组件全托管免运维,支持自动升级 k8s 版本。其次,该产品具有极致弹性能力。可以根据业务需求,自动弹性、秒级扩容,从而在满足业务增长时自动容量规划。最后,使用 Serverless Kubernetes 的用户,只需根据实际使用量按需计费。除此之外,ASK 还提供了新增的 U 实例规格支持,统一支持多款处理器,相比上一代主售实例降价高达 40%。



为了让更多用户体验最佳实践,我们特地将其打造成了一个体验场景,配合热门开源的 AI 项目 Stable Diffusion,用户可以通过真实的云上环境,轻松体验容器化部署具备企业级弹性能力的 AI 模型。


在 ASK 中部署 Stable Diffusion


随着生成型 AI 技术的能力提升,越来越多的注意力放在了通过 AI 模型提升研发效率上。作为 AIGC(AI Generated Content)领域的知名项目 Stable Diffusion,可以帮助用户快速、准确地生成想要的场景及图片。不过当前直接在 K8s 使用 Stable Diffusion 面临如下问题:


  • 单个 Pod 处理请求的吞吐率有限,如果多个请求转发到同一个 Pod,会导致服务端过载异常,因此需要精准的控制单个 Pod 请求并发处理数。
  • GPU 资源很珍贵,期望做到按需使用资源,在业务低谷及时释放 GPU 资源


基于上面两个问题,我们提供 ASK + Knative 解决方案,可以做到基于并发精准弹性,缩容到 0,资源按需使用,打造生产可用的 Stable Diffusion 服务。


方案

这里我们在 ASK 中提供 Knative + MSE 方式解决上述问题:


  • 基于 MSE 网关,扩展 Knative 弹性插件机制,实现基于并发数精准弹性
  • 支持缩容到 0, 按需使用自动弹性
  • 多版本管理、镜像加速,助力模型快速发布迭代



实践

接下来我们介绍如何在 ASK 中部署 Stable Diffusion 服务。


服务部署

1. 在集群列表页面,单击目标集群 knative-sd-demo 进入集群信息页面,然后在左侧导航栏,选择应用>Knative。


2. 在 Knative 页面,单击服务管理页签,然后单击使用模板创建


3. 在命名空间下拉列表中,选择 default,在示例模板下拉列表中,选择 Resouce-Knative Service,将以下消息处理服务的 YAML 示例粘贴至模板,然后单击创建


默认创建一个名为 knative-sd-demo 的服务。


apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: knative-sd-demo
  annotations:
    serving.knative.dev.alibabacloud/affinity: "cookie"
    serving.knative.dev.alibabacloud/cookie-name: "sd"
    serving.knative.dev.alibabacloud/cookie-timeout: "1800"
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/class: mpa.autoscaling.knative.dev
        autoscaling.knative.dev/maxScale: '10'
        autoscaling.knative.dev/targetUtilizationPercentage: "100"
        k8s.aliyun.com/eci-use-specs: ecs.gn5-c4g1.xlarge,ecs.gn5i-c8g1.2xlarge,ecs.gn5-c8g1.2xlarge  
    spec:
      containerConcurrency: 1
      containers:
      - args:
        - --listen
        - --skip-torch-cuda-test
        - --api
        command:
        - python3
        - launch.py
        image: yunqi-registry.cn-shanghai.cr.aliyuncs.com/lab/stable-diffusion@sha256:64999ff1aba706f65a2234d861d46318f7d58e2790b31ace0d567a96e65b617c
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 7860
          name: http1
          protocol: TCP
        name: stable-diffusion
        readinessProbe:
          tcpSocket:
            port: 7860
          initialDelaySeconds: 5
          periodSeconds: 1
          failureThreshold: 3


参数说明:

  • 支持 Cookie 会话保持:serving.knative.dev.alibabacloud/affinity
  • 支持多种 GPU 规格配置:k8s.aliyun.com/eci-use-specs
  • 支持并发数设置:containerConcurrency



4. 在服务管理页签,刷新页面后,当 knative-sd-demo 的状态变为成功时,表明 SD 服务部署成功。

image.png


服务访问并进行压测

部署压测服务 portal-server,用于 Stable Diffusion 效果展示并发起压测。


1. 在 Knative 页面,单击服务管理页签,然后单击使用模板创建


2. 在命名空间下拉列表中,选择 default,在示例模板下拉列表中,选择自定义,将以下 portal-server 压测服务的 YAML 示例粘贴至模板,然后单击创建


---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: portal-server
  name: portal-server
spec:
  replicas: 1
  selector:
    matchLabels:
      app: portal-server
  template:
    metadata:
      labels:
        app: portal-server
    spec:
      serviceAccountName: portal-server
      containers:
        - name: portal-server
          image: registry-vpc.cn-beijing.aliyuncs.com/acs/sd-yunqi-server:v1.0.2
          imagePullPolicy: IfNotPresent
          env:
            - name: MAX_CONCURRENT_REQUESTS
              value: "5"
            - name: POD_NAMESPACE
              value: "default"
          readinessProbe:
            failureThreshold: 3
            periodSeconds: 1
            successThreshold: 1
            tcpSocket:
              port: 8080
            timeoutSeconds: 1
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: internet
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-instance-charge-type: PayByCLCU
  name: portal-server
spec:
  externalTrafficPolicy: Local
  ports:
    - name: http-80
      port: 80
      protocol: TCP
      targetPort: 8080
    - name: http-8888
      port: 8888
      protocol: TCP
      targetPort: 8888
  selector:
    app: portal-server
  type: LoadBalancer
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: pod-list-cluster-role
rules:
  - apiGroups: [""]
    resources: ["pods"]
    verbs: ["list"]
  - apiGroups: ["networking.k8s.io"]
    resources: ["ingresses"]
    verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: pod-list-cluster-role-binding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: pod-list-cluster-role
subjects:
  - kind: ServiceAccount
    name: portal-server
    namespace: default
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: portal-server
  namespace: default


3. 选择网络>服务,服务页面,查看 portal-server 压测服务,获取访问 IP 为 123.56.XX.XX。



4. 在浏览器中输入 http://123.56.XX.XX,然后在该页面单击 Stable Diffusion 跳转至 Stable Diffusion 访问页面。



a. Stable Diffusion 访问页面如下所示。例如,在如下文本框中输入 cat,然后单击 Generate,将展示与输入有关的图片信息。



b. 在压测访问页面,设置并发数5总请求数20,然后单击开始压测,查看压测的结果。



压测期间,可以看到创建了 5 个 Pod,并且每个请求均会生成一个图片,图片生成后将展示到页面中。


查看可观测大盘

此外在 Knative 提供了开箱即用的可观测能力,在 Knative 页面,单击监控大盘页签。即可看到 Stable Diffusion 服务的请求量(Request Volume)、请求成功率(Success Rate)、4xx(客户端错误)、5xx(服务器端错误)和Pod扩缩容趋势的监控数据。



Response Time 区域,查看 Knative 的响应延迟数据,包括 P50、P90、P95 和 P99。



小结


基于 ASK Knative 并发精准弹性,缩容到 0,多版本管理等功能,可以轻松部署企业级 AI 服务。当前已在阿里云云起实验提供《基于 ASK 轻松部署企业级 Stable Diffusion》动手实践,欢迎体验:

扫码体验企业级弹性能力


体验地址:

https://developer.aliyun.com/adc/scenario/de33e7d3065949f3b81db292b2dca5ea

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2天前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
|
3天前
|
人工智能 供应链 安全
阿里云 Confidential AI 最佳实践
本次分享的主题是阿里云 Confidential AI 最佳实践,由阿里云飞天实验室操作系统安全团队工程师张佳分享。主要分为三个部分: 1. Confidential AI 技术背景与挑战 2. Confidential AI 技术架构与应用场景 3. Confidential AI 技术实践与未来展望
|
3天前
|
人工智能 Java API
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
本次分享的主题是阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手,由阿里云两位工程师分享。
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
|
Serverless 算法框架/工具 异构计算
云上快速搭建Serverless AI实验室
Serverless Kubernetes和ACK虚拟节点都已基于ECI提供GPU容器实例功能,让用户在云上低成本快速搭建serverless AI实验室,用户无需维护服务器和GPU基础运行环境,极大降低AI平台运维的负担,显著提升整体计算效率。
6045 0
|
4天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
12天前
|
机器学习/深度学习 人工智能 算法
AI在体育分析与预测中的深度应用:变革体育界的智能力量
AI在体育分析与预测中的深度应用:变革体育界的智能力量
77 31
|
7天前
|
人工智能 运维 负载均衡
智能运维新时代:AI在云资源管理中的应用与实践
智能运维新时代:AI在云资源管理中的应用与实践
82 23
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
82 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
15天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
64 23
|
3天前
|
人工智能 缓存 安全
每一个大模型应用都需要一个 AI 网关|场景和能力
本次分享的主题是每一个大模型应用都需要一个 AI 网关|场景和能力。由 API 网关产品经理张裕(子丑)进行分享。主要分为三个部分: 1. 企业应用 AI 场景面临的挑战 2. AI 网关的产品方案 3. AI 网关的场景演示

相关产品

  • 容器计算服务
  • 函数计算