绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程(2)

简介: 绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

由于没有多的 GPU 可用于张量分片(tensor sharding),又能做些什么来训练具有更大批大小(batch size)的模型呢?其中一种解决方法就是梯度累积,可以通过它来修改前面提到的训练循环。


什么是梯度积累?梯度累积是一种在训练期间虚拟增加批大小(batch size)的方法,当可用的 GPU 内存不足以容纳所需的批大小时,这非常有用。在梯度累积中,梯度是针对较小的批次计算的,并在多次迭代中累积(通常是求和或平均),而不是在每一批次之后更新模型权重。一旦累积梯度达到目标「虚拟」批大小,模型权重就会使用累积梯度进行更新。参考下面更新的 PyTorch 训练循环:如果将 accumulation_steps 设置为 2,那么 zero_grad () 和 optimizer.step () 将只会每隔一秒调用一次。因此,使用 accumulation_steps=2 运行修改后的训练循环与将批大小(batch size)加倍具有相同的效果。例如,如果想使用 256 的批大小,但只能将 64 的批大小放入 GPU 内存中,就可以对大小为 64 的四个批执行梯度累积。(处理完所有四个批次后,将获得相当于单个批大小为 256 的累积梯度。)这样能够有效地模拟更大的批大小,而无需更大的 GPU 内存或跨不同设备的张量分片。虽然梯度累积可以帮助我们训练具有更大批量大小的模型,但它不会减少所需的总计算量。实际上,它有时会导致训练过程略慢一些,因为权重更新的执行频率较低。尽管如此,它却能帮我们解决限制问题,即批大小非常小时导致的更新频繁且混乱。例如,现在让我们运行上面的代码,批大小为 1,需要 16 个累积步骤(accumulation steps)来模拟批大小等于 16。输出如下:


...
torch : 2.0.0
lightning : 2.0.0
transformers: 4.27.2
Torch CUDA available? True
...
Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0168
Epoch: 0001/0001 | Batch 24000/35000 | Loss: 0.0006
Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0152
Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.0003
Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.0623
Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.0010
Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0001
Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0047
Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0004
Epoch: 0001/0001 | Batch 26400/35000 | Loss: 0.1016
Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0021
Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0008
Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0060
Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0001
Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0426
Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0012
Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0025
Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0025
Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0000
Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0495
Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0164
Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0067
Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0037
Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0005
Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0013
Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0112
Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0053
Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0012
Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1365
Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0210
Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0374
Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007
Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0341
Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.0259
Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0005
Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4792
Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0003
Epoch: 0001/0001 | Train acc.: 78.67% | Val acc.: 87.28%
Time elapsed 51.37 min
Test accuracy 87.37%


根据上面的结果,损失的波动比以前小了。此外,测试集性能提升了 10%。由于只迭代了训练集一次,因此每个训练样本只会遇到一次。训练用于 multiple epochs 的模型可以进一步提高预测性能。你可能还会注意到,这段代码的执行速度也比之前使用的批大小为 1 的代码快。如果使用梯度累积将虚拟批大小增加到 8,仍然会有相同数量的前向传播(forward passes)。然而,由于每八个 epoch 只更新一次模型,因此反向传播(backward passes)会很少,这样可更快地在一个 epoch(训练轮数)内迭代样本。结论梯度累积是一种在执行权重更新之前通过累积多个小的批梯度来模拟更大的批大小的技术。该技术在可用内存有限且内存中可容纳批大小较小的情况下提供帮助。但是,首先请思考一种你可以运行批大小的场景,这意味着可用内存大到足以容纳所需的批大小。在那种情况下,梯度累积可能不是必需的。事实上,运行更大的批大小可能更有效,因为它允许更多的并行性且能减少训练模型所需的权重更新次数。总之,梯度累积是一种实用的技术,可以用于降低小批大小干扰信息对梯度更新准确性的影响。这是迄今一种简单而有效的技术,可以让我们绕过硬件的限制。PS:可以让这个运行得更快吗?没问题。可以使用 PyTorch 2.0 中引入的 torch.compile 使其运行得更快。只需要添加一些 model = torch.compile,如下图所示:GitHub 上提供了完整的脚本。在这种情况下,torch.compile 在不影响建模性能的情况下又减少了十分钟的训练时间:

poch: 0001/0001 | Batch 26400/35000 | Loss: 0.0320
Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0010
Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0006
Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0157
Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0540
Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0035
Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0016
Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0008
Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0877
Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0232
Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0014
Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0032
Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0004
Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0062
Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0032
Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0066
Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0017
Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1485
Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0324
Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0155
Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007
Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0049
Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.1170
Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0002
Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4201
Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0018
Epoch: 0001/0001 | Train acc.: 78.39% | Val acc.: 86.84%
Time elapsed 43.33 min
Test accuracy 87.91%

请注意,与之前相比准确率略有提高很可能是由于随机性。原文链接:https://lightning.ai/pages/blog/gradient-accumulation/

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
4月前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
4月前
|
机器学习/深度学习 算法 物联网
Google开源Tunix:JAX生态的LLM微调方案来了
Tunix是Google推出的基于JAX的LLM后训练库,支持微调、强化学习与知识蒸馏,集成Flax NNX,主打TPU优化与模块化设计,支持QLoRA等高效训练方法,适用于高性能分布式训练场景。
397 13
Google开源Tunix:JAX生态的LLM微调方案来了
|
4月前
|
数据采集 机器学习/深度学习 自然语言处理
98_数据增强:提升LLM微调效果的关键技术
在大语言模型(LLM)的微调过程中,数据质量与数量往往是决定最终性能的关键因素。然而,获取高质量、多样化且标注准确的训练数据却常常面临诸多挑战:数据标注成本高昂、领域特定数据稀缺、数据分布不均等问题都会直接影响微调效果。在这种背景下,数据增强技术作为一种能够有效扩充训练数据并提升其多样性的方法,正发挥着越来越重要的作用。
|
5月前
|
数据采集 算法
TsingtaoAI摘得长三角算力算法创新大赛冠军
在2025年长三角(芜湖)算力算法创新应用大赛的颁奖典礼上,TsingtaoAI团队凭借“通用具身智能PoC实验底座研发及产业化”项目,摘得数据赛道冠军。这一赛事于9月23日在芜湖市隆重举行,由芜湖市人民政府主办,芜湖市数据资源管理局、市委人才局和市科技局承办。
147 0
|
6月前
|
数据可视化 物联网 开发者
深度解析四大LLM微调工具:从单卡到千亿级训练的四大解决方案
本文详解大语言模型微调四大工具——Unsloth、Axolotl、LlamaFactory、DeepSpeed,覆盖从单卡实验到万亿参数分布式训练场景,助你掌握主流框架选型策略,提升微调效率。建议点赞收藏。
2225 1
|
8月前
|
存储 自然语言处理 算法
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
本文探讨了在构建对话系统时如何通过一种内存高效算法降低大语言模型(LLM)的Token消耗和运营成本。传统方法中,随着对话深度增加,Token消耗呈指数级增长,导致成本上升。
738 7
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
|
12月前
|
存储 人工智能 测试技术
跨模态大升级!少量数据高效微调,LLM教会CLIP玩转复杂文本
LLM2CLIP是一种创新方法,旨在通过利用大型语言模型(LLM)的能力来改进CLIP多模态模型。该方法通过对比学习微调LLM,增强其文本判别性,并将其作为CLIP的强教师,从而显著提升CLIP处理长复杂文本和跨语言任务的能力。实验表明,LLM2CLIP在多个基准测试中优于现有模型,特别是在长文本检索任务上性能提升了16.5%。尽管如此,该方法在实际应用中的鲁棒性和资源需求仍需进一步验证。论文链接:https://arxiv.org/pdf/2411.04997。
488 70
|
人工智能 算法 搜索推荐
算法备案全流程攻略:保姆级教程
在AI热潮下,算法成为互联网服务的核心驱动力,但也带来了大数据杀熟、算法歧视等问题。为规范行业发展,算法备案制度应运而生。该制度涵盖网站、APP等多种产品形式,要求企业在2个月内完成备案,依据《互联网信息服务算法推荐管理规定》等法规。未备案企业可能面临无法上线、罚款甚至刑罚的后果。备案流程包括注册、主体备案、信息填报及审核,确保算法合规运营。通过悬挂备案号、标识AI生成内容和定期自查,企业需持续维护算法安全与合规。
|
存储 算法 数据挖掘
重磅发布 | OpenSearch推出向量检索GPU图算法方案并支持GPU规格售卖
OpenSearch向量检索版推出了面向企业开发者的GPU图算法方案(CAGRA算法),支持客户直接购买GPU规格节点,是国内首家支持GPU规格的向量检索产品。
1186 12

热门文章

最新文章