TPVFormer项目原作解读:面向自动驾驶场景的纯视觉三维语义占有预测

简介: TPVFormer项目原作解读:面向自动驾驶场景的纯视觉三维语义占有预测


机器之心最新一期线上分享邀请到了清华大学智能视觉实验室组博士生郑文钊,为大家分享他们近期工作 TPVFormer。

当前以视觉为中心的自动驾驶感知主要集中于三维目标检测,然而预测出的三维框描述物体过于粗糙,忽略了物体的几何形状;且仅完成了对前景物体的预测,而忽略了背景环境信息。受此启发,我们主要研究了基于视觉的三维语义占有预测这一新型任务,其输入为环视图片,目标通过对每个体素进行语义标签的预测,生成密集预测的环境表示,使环境感知更加可靠、稳定。本次分享主要介绍纯视觉三维语义占有预测的最新进展,基于 CVPR 2023 的最新论文 Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction。

目前的纯视觉自动驾驶感知方法广泛采用鸟瞰图 (BEV) 表示来描述 3D 场景。尽管它比体素(Voxel)表示效率更高,但单独的 BEV 平面难以描述场景的细粒度 3D 结构,难以很好地完成三维语义占有预测这个任务。针对这个问题,论文提出了一种新型的三维空间表示方法 Tri-Perspective View (TPV),其在 BEV 平面的基础上新增了两个平面,从而可以描述整个三维场景的细粒度结构。为了将图像特征提升到 TPV 空间,我们进一步提出了 TPVFormer 来有效地获得 TPV 特征。

以环视图像作为输入,TPVFormer 仅使用稀疏 LiDAR 语义标签进行训练,但可以有效地预测空间中所有体素的语义占有。此外,TPVFormer 也是首个仅使用图像输入在 nuScenes LiDAR Segmentation 上取得良好性能的方法。代码已经开源 GitHub 仓库,后续将支持更多的三维语义占有预测模型、方法和数据。


分享主题:TPVFormer:面向自动驾驶场景的纯视觉三维语义占有预测

分享嘉宾:郑文钊,清华大学 IVG 组博士生,师从周杰教授和鲁继文副教授,研究方向是计算机视觉和机器学习,主要兴趣包括自动驾驶感知、相似性度量学习和可解释性人工智能,在 TPAMI、CVPR、ICLR 等顶刊及顶会上发表相关论文 17 篇。

分享摘要首先介绍纯视觉三维语义占有预测这个任务的背景及意义,接下来介绍所提出的 Tri-Perspective View(TPV)三维场景表示方法,最后是基于该场景表示方法的 TPVFormer 网络结构以及其在三维语义占有、点云分割、场景语义补全任务上的应用。

相关链接:

1)SOTA!模型平台项目主页链接:

https://sota.jiqizhixin.com/project/tpvformer

2)论文链接:

https://arxiv.org/abs/2302.07817v1

3)代码仓库:

https://github.com/wzzheng/TPVFormer

https://github.com/wzzheng/OpenOcc

4)项目主页:

https://wzzheng.net/TPVFormer/

相关文章
|
传感器 机器学习/深度学习 自动驾驶
自动驾驶:BEV开山之作LSS(lift,splat,shoot)原理代码串讲
自动驾驶:BEV开山之作LSS(lift,splat,shoot)原理代码串讲
5296 1
自动驾驶:BEV开山之作LSS(lift,splat,shoot)原理代码串讲
|
消息中间件 安全 Java
【RabbitMQ高级篇】消息可靠性问题
【RabbitMQ高级篇】消息可靠性问题
414 0
|
传感器 机器学习/深度学习 编解码
最新综述!基于视觉的自动驾驶环境感知(单目、双目和RGB-D)
目相机使用来自单个视点的图像数据作为输入来估计对象深度,相比之下,立体视觉是基于视差和匹配不同视图的特征点,深度学习的应用也进一步提高了准确性。此外,SLAM可以建立道路环境模型,从而帮助车辆感知周围环境并完成任务。本文介绍并比较了各种目标检测和识别方法,然后解释了深度估计的发展,并比较了基于单目、立体和RGB-D传感器的各种方法,接下来回顾并比较了SLAM的各种方法。最后总结了当前存在的问题,并提出了视觉技术的未来发展趋势。
最新综述!基于视觉的自动驾驶环境感知(单目、双目和RGB-D)
|
安全 网络安全 数据安全/隐私保护
网络安全漏洞、加密技术与安全意识:保护你的数字身份
在数字化时代,网络安全和信息安全变得至关重要。本文将探讨网络安全漏洞、加密技术和安全意识的重要性,并提供一些实用的建议和技巧,帮助你保护自己的数字身份。无论你是个人用户还是企业,了解这些概念并采取适当的措施都是至关重要的。
|
机器学习/深度学习 数据挖掘
西浦、利物浦大学提出:点云数据增强首个全面综述
【5月更文挑战第26天】西交利物浦大学和利物浦大学的研究团队发表了一篇关于点云数据增强的首部全面综述,分析了点云增强技术在缓解深度学习模型过拟合问题上的作用。研究将方法分为基本(如仿射变换、随机丢弃)和高级(混合、对抗性变形)两类,并探讨了各类方法的优缺点及应用场景。尽管基本方法常用,但自动优化组合和参数、多模态增强及性能评估标准仍是挑战。该综述为研究者提供了理解与应用点云增强的指导,但也指出在某些领域的深入探讨尚不足。[arXiv:2308.12113]
477 1
|
机器学习/深度学习 数据可视化 计算机视觉
【YOLOv8改进 - 注意力机制】Triplet Attention:轻量有效的三元注意力
**摘要:** 本文提出TripletAttention,一种轻量级的计算机视觉注意力机制,通过三分支结构增强跨维度交互。该方法利用旋转操作和残差变换在通道和空间维度上建立依赖,提升模型性能,同时保持低计算成本。作为附加模块,它能集成到现有骨干网络中,适用于图像分类及目标检测等任务。实验证实在ImageNet-1k、MSCOCO和PASCAL VOC上取得良好效果,并提供GradCAM可视化分析。代码已开源:[GitHub](https://github.com/LandskapeAI/triplet-attention)。
|
程序员 流计算 Docker
Flink程序员开发利器本地化WebUI生成
Flink程序员开发利器本地化WebUI生成
473 0
若依框架---如何实现翻页保留选择?如何调整首页左侧菜单栏宽度?
若依框架---如何实现翻页保留选择?如何调整首页左侧菜单栏宽度?
546 3