带你读《企业级云原生白皮书项目实战》——5.3.3 任务性能(4)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 带你读《企业级云原生白皮书项目实战》——5.3.3 任务性能(4)

《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.3 任务性能(3) https://developer.aliyun.com/article/1228337


5.3.3.2.2 排查优化方案

数据倾斜是flflink任务中大家都会遇到的高频问题,一旦发生数据倾斜会带来哪些影响呢。

(1)单点问题

数据集中在某些分区上(Subtask),导致数据严重不平衡,单点资源处理耗时长。

(2)GC 频繁

过多的数据集中在某些 JVM(TaskManager),使得JVM 的内存资源短缺,导致频繁 GC情况。

(3)吞吐下降、延迟增大

数据单点和频繁 GC 导致吞吐下降上游消费慢,下游写入慢、任务整体延迟增大。

(4)系统崩溃

严重情况下,过长的 GC 导致 TaskManager 失联,任务异常终止。面对这种常见的flflink任务数据倾斜情况,一般有如下的定位排查方案。首先根据flflink任务清理在确定是否存在数据倾斜情况:

(1)根据flflink监控查看任务反压

Flink Web UI 自带的反压监控(直接方式)来确定任务出现反压,然后通过监控反压的信息,可以获取到数据处理瓶颈的 Subtask。

(2)查看对应Subtasks,多并发情况下,当 Subtasks 之间处理的数据量有较

大的差距,则该 Subtask 出现数据倾斜。如下图所示,红框内的 Subtask 出现数据热点。

image.png


对于出现数据清晰的flflink任务如何进行排查呢?常见的有付下的一些场景:

(1)数据源 source 消费不均匀

解决思路:通过调整并发度,解决数据源消费不均匀或者数据源反压的情况。例如kafka数据源,可以调整 KafkaSource 的并发度解决消费不均匀。调整并发度的原则:KafkaSource 并发度与 kafka 分区数是一样的,或者 kafka 分区数是KafkaSource 并发度的整数倍。

(2)key 分布不均匀的无统计场景

问题说明:key分布不均匀的无统计场景,例如上游数据分布不均匀,使用keyBy来打散数据。

解决思路:通过添加随机前缀,打散 key 的分布,使得数据不会集中在几个 Subtask。

(3)GroupBy + Aggregation 分组聚合热点问题

业务上通过 GroupBy 进行分组,然后紧跟一个 SUM、COUNT 等聚合操作是非常常见的。我们都知道 GroupBy 函数会根据 Key 进行分组,完全依赖 Key 的设计,如果 Key 出现热点,那么会导致巨大的 shufflfflffle,相同 key 的数据会被发往同一个处理节点;如果某个 key 的数据量过大则会直接导致该节点成为计算瓶颈,引起反压。

5.3.3.2.3 典型案例

flflink实时任务使用了窗口函数,但是发现下游的数据一直没有计算输出的异常。

根据上游kafka的监控查看,可以看到数据有严重的倾斜问题。如下图所示,10个分区中有三个分区数据量特别少,5号分区基本上没数据。

image.png


分析这个watermark的传递机制

当并行执行的情况下,如下图所示,每次接受的watermark发送的watermark都是最小的,木桶效应。但是,当某个分区始终无数据的时候,就不会更新该分区的watermark值,那么窗口就一直不会被触发计算。这种现象在某些hash极端导致数据倾斜很普遍。

解决方案:

把flflink任务的并行度改小,使得每个并行进程处理多个分区数据,同个并行的进程处理多分区数据就会使用最大的watermark,这里还有一点异常是来自上游kafka,从kafka的监控看数据写入kafka的分区的数据实际上就是不均衡的,如果是均衡的则一般不会出现flflink消费数据倾斜的情况,所以一般还是要保持flflink消费的上游数据源也是数据均衡的情况,也可以避免数据倾斜的发生,实际的做法就是写入的时候将数据打散,避免出现分区热点数据的情况。


《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.3 任务性能(5) https://developer.aliyun.com/article/1228335

相关文章
|
6月前
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
|
9月前
|
监控 Java 数据处理
【Spring云原生】Spring Batch:海量数据高并发任务处理!数据处理纵享新丝滑!事务管理机制+并行处理+实例应用讲解
【Spring云原生】Spring Batch:海量数据高并发任务处理!数据处理纵享新丝滑!事务管理机制+并行处理+实例应用讲解
|
9月前
|
存储 Cloud Native Docker
百度搜索:蓝易云【云原生之使用Docker部署Notepad个人任务管理工具】
这样,你就成功地使用Docker部署了Notepad个人任务管理工具。通过Docker部署Notepad可以使应用的安装和配置更加便捷,并且可以隔离应用环境,避免影响到宿主机的系统。希望以上教程对你有所帮助!如果你有其他问题,请随时继续提问。
108 0
|
9月前
|
关系型数据库 MySQL Serverless
阿里云云原生数据库 PolarDB MySQL Serverless:卓越的性能与无与伦比的弹性
阿里云原生数据库 PolarDB MySQL Serverless 拥有卓越性能和无与伦比的弹性。通过实验体验,深入了解其基本管理和配置、智能弹性伸缩特性和全局一致性特性。实验包括主节点和只读节点的弹性压测以及全局一致性测试,旨在亲身体验 PolarDB 的强大性能。通过实验,可以更好地在实际业务场景中应用 PolarDB,并根据需求进行性能优化和调整。
789 2
|
17天前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
40 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
|
6月前
|
Kubernetes Cloud Native Java
云原生之旅:从容器到微服务的演进之路Java 内存管理:垃圾收集器与性能调优
【8月更文挑战第30天】在数字化时代的浪潮中,企业如何乘风破浪?云原生技术提供了一个强有力的桨。本文将带你从容器技术的基石出发,探索微服务架构的奥秘,最终实现在云端自由翱翔的梦想。我们将一起见证代码如何转化为业务的翅膀,让你的应用在云海中高飞。
|
3月前
|
人工智能 Cloud Native 算法
|
4月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
119 3
|
7月前
|
数据采集 运维 Cloud Native
Flink+Paimon在阿里云大数据云原生运维数仓的实践
构建实时云原生运维数仓以提升大数据集群的运维能力,采用 Flink+Paimon 方案,解决资源审计、拓扑及趋势分析需求。
18560 54
Flink+Paimon在阿里云大数据云原生运维数仓的实践
|
6月前
|
Cloud Native 安全 调度
Flink 新一代流计算和容错问题之Flink 通过云原生技术改进容错设计要如何操作
Flink 新一代流计算和容错问题之Flink 通过云原生技术改进容错设计要如何操作