全方位分析大模型参数高效微调,清华研究登Nature子刊(3)

简介: 全方位分析大模型参数高效微调,清华研究登Nature子刊

3. 模型规模增长的性能变化
我们研究了模型的规模增大对于 Delta Tuning 性能的影响。最近,有研究发现 ,随着使用的 PLM 的模型规模增长,Prompt Tuning 的性能会越来越强,甚至可以达到和全参数 Fine-tuning 微调相匹敌的水平。在这一小节中,我们将探讨是否所有 Delta Tuning 方法均能够表现出这种模型规模带来的优势(Power of Scale)。具体来说,我们对 MNLI、QNLI 和 SST-2 三个典型的 NLP 任务进行了实验,并选择了三个规模不断增加的 PLM(T5-small、T5-base、T5-xxl),并评估了六种具有代表性的 Delta 调整方法的性能(Adapter、LoRA、Prefix-Tuning、Prompt Tuning、Last Layer Tuning 和 Selective Module Tuning),结果如下图所示。



从图  (a-i) 中,我们可以观察到,随着 PLM 网络规模的增长,所有 Delta Tuning 方法的性能和收敛性都得到了显着提高;(2) 此外,图 (j-l) 表明,与其他 Delta 调整方法相比,Prompt Tuning 往往对小规模 PLM(T5-small 和 T5-base)性能比较差。但是,其他 Delta Tuning 方法没有这个问题;(3) 基于现有结果,在图 11 (m-o) 和 (p-r) 中,我们进一步设计了两种 Delta Tuning 方法:Last Layer Tuning 和 Selective Module Tuning。对于 Last Layer Tuning ,我们只微调 T5 encoder 的最后一层;对于 Selective Module Tuning,我们随机选择 T5 模型中的部分模块进行微调。这两种方法都表现出优异的效果,尤其是当 PLM 的规模非常大时,Selective Module Tuning 略好于 Last Layer Tuning。这些结果表明,将可微调的参数限制在某个特定层内可能不是一个好的策略。另一方面,当 PLM 的规模变得非常大时,跨不同层随机选择模块来微调可以实现出色的性能。总的来说,上述结果表明,随着 PLM 模型规模的增长,各种微调方法的性能 / 收敛速度得到显著提升可能是 Delta Tuning 的常见现象。我们猜测这种现象的存在是因为,较大的 PLM 通常具有较小的本征维度(Intrinsic Dimension),因此,仅调整很少的参数即可获得足够强的表示能力,从而在下游任务中实现非平凡的性能;此外,过参数化的模型可能在下游优化过程中更不容易陷入局部最优,从而加速收敛。

4. 任务间迁移能力

我们研究了不同下游任务之间 Delta Tuning 方法的可迁移性,具体而言,我们采用了 4 种 Delta Tuning 方法(Prompt Tuning、Prefix-Tuning、Adapter 和 LoRA)和 5 种不同类型的 12 个 NLP 任务(包括情感分析、自然语言推理、转述识别、问答、总结),并将在源任务上训练好的 Delta 参数迁移到目标任务上,测试 zero-shot 迁移效果。结果如下图所示,从中我们可以观察到:(1)对于属于同一类别的任务,它们之间的迁移通常表现良好;(2)对于不同类型的任务,在它们之间迁移性能较差;(3) 另外,我们发现从文本生成任务(如问答和摘要)训练得到的 Delta 参数可以迁移到情感分析任务上并取得优异的表现,这表明文本生成任务可能是一项更复杂的任务,解决该任务所需要的语言能力可能包括了情感分析能力。


Delta Tuning 的应用

快速训练与存储空间节省。Transformer 模型虽然本质上是可并行化的,但由于其庞大的规模,训练起来非常缓慢。尽管 Delta Tuning 的收敛速度可能比传统的全参数微调慢,但随着反向传播期间可微调参数的计算量显著减少,Delta Tuning 的训练速度也得到了显著提升。以前的研究已经验证了,使用 Adapter 进行下游调优可以将训练时间减少到 40%,同时保持与全参数微调相当的性能。由于轻量的特性,训练得到的 Delta 参数还可以节省存储空间,从而方便在从业者之间共享,促进知识迁移。

多任务学习。构建通用的人工智能系统一直是研究人员的目标。最近,超大型 PLM (例如 GPT-3) 已经展示了同时拟合不同数据分布和促进各种任务的下游性能的惊人能力。因此,在大规模预训练时代,多任务学习受到越来越多的关注。作为全参数微调方法的有效替代,Delta Tuning 具有出色的多任务学习能力,同时保持相对较低的额外存储。成功的应用包括多语言学习、阅读理解等。此外,Delta Tuning 也有望作为持续学习中灾难性遗忘的潜在解决方案。在预训练期间获得的语言能力存储在模型的参数中。因此,当 PLM 在一系列任务中按顺序进行训练时,在没有正则化的情况下更新 PLM 中的所有参数可能会导致严重的灾难性的遗忘。由于 Delta Tuning 仅调整最小参数,因此它可能是减轻灾难性遗忘问题的潜在解决方案。

中心化模型服务和并行计算。超大型 PLM 通常作为服务发布,即用户通过与模型提供者公布的 API 交互来使用大模型,而不是本地存储大模型。考虑到用户和服务提供商之间难以承受的通信成本,由于其轻量级的特性,Delta Tuning 显然是比传统全参数微调更具竞争力的选择。一方面,服务提供商可以支持训练多个用户所需的下游任务,同时消耗更少的计算和存储空间。此外,考虑到一些 Delta Tuning 算法本质上是可并行的(例如 Prompt Tuning 和 Prefix-Tuning 等),因此 Delta Tuning 可以允许在同一个 batch 中并行训练 / 测试来自多个用户的样本(In-batch Parallel Computing)。最近的工作还表明,大多数 Delta Tuning 方法,如果本质上不能并行化,也可以通过一些方法修改以支持并行计算。另一方面,当中心的达模型的梯度对用户不可用时,Delta Tuning 仍然能够通过无梯度的黑盒算法,仅调用模型推理 API 来优化大型 PLM。

[1] Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning."  arXiv preprint arXiv:2104.08691 (2021).

相关文章
|
2月前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
1984 2
|
4月前
|
XML JSON 数据库
大模型不听话?试试提示词微调
想象一下,你向大型语言模型抛出问题,满心期待精准回答,得到的却是答非所问,是不是让人抓狂?在复杂分类场景下,这种“大模型不听话”的情况更是常见。
306 9
|
3月前
|
人工智能 自然语言处理 测试技术
有没有可能不微调也能让大模型准确完成指定任务?(少样本学习)
对于我这种正在从0到1构建AI产品的一人公司来说,Few Shots学习的最大价值在于:用最少的资源获得最大的效果。我不需要大量的标注数据,不需要复杂的模型训练,只需要精心设计几个示例,就能让大模型快速理解我的业务场景。
305 43
|
2月前
|
存储 数据采集 自然语言处理
56_大模型微调:全参数与参数高效方法对比
随着大型语言模型(LLM)规模的不断增长,从数百亿到数千亿参数,传统的全参数微调方法面临着计算资源消耗巨大、训练效率低下等挑战。2025年,大模型微调技术已经从早期的全参数微调发展到如今以LoRA、QLoRA为代表的参数高效微调方法,以及多种技术融合的复杂策略。本文将深入对比全参数微调和参数高效微调的技术原理、适用场景、性能表现和工程实践,为研究者和工程师提供全面的技术参考。
|
2月前
|
机器学习/深度学习 存储 人工智能
大模型微调:从理论到实践的全面指南
🌟蒋星熠Jaxonic:AI探索者,专注大模型微调技术。从LoRA到RLHF,实践医疗、法律等垂直领域模型优化,分享深度学习的科学与艺术,共赴二进制星河的极客征程。
大模型微调:从理论到实践的全面指南
|
3月前
|
机器学习/深度学习 数据采集 算法
大模型微调技术综述与详细案例解读
本文是一篇理论与实践结合的综述文章,综合性全面介绍大模型微调技术。本文先介绍大模型训练的两类场景:预训练和后训练,了解业界常见的模型训练方法。在后训练介绍内容中,引出模型微调(模型微调是属于后训练的一种)。然后,通过介绍业界常见的模型微调方法,以及通过模型微调实操案例的参数优化、微调过程介绍、微调日志解读,让读者对模型微调有更加直观的了解。最后,我们详细探讨数据并行训练DDP与模型并行训练MP两类模型并行训练技术,讨论在实际项目中如何选择两类并行训练技术。
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。

热门文章

最新文章