这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3(2)

简介: 这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3

实验结果

常识性推理


在表 3 中,研究者与现有的各种规模的模型进行比较,并报告了相应论文中的数字。首先,LLaMA-65B 在所有报告的基准上都超过了 Chinchilla-70B,除了 BoolQ。同样,除了在 BoolQ 和 WinoGrande 上,这个模型在任何方面都超过了 PaLM540B。LLaMA-13B 模型在大多数基准上也超过了 GPT-3,尽管其体积小了 10 倍。



闭卷答题

表 4 展示了 NaturalQuestions 的性能,表 5 展示了 TriviaQA 的性能。在这两项基准测试中,LLaMA-65B 在零样本和少样本设置中都达到了最先进的性能。更重要的是,尽管 LLaMA-13B 是 GPT-3 和 Chinchilla 的五分之一到十分之一,但在这些基准测试中也同样备竞争力。该模型的推理过程是在单个 V100 GPU 上运行的。



阅读理解

研究者还在 RACE 阅读理解基准 (Lai et al., 2017) 上评估了模型。此处遵循 Brown et al. (2020) 的评估设置,表 6 展示了评估结果。在这些基准上,LLaMA-65B 与 PaLM-540B 具有竞争力,而且,LLaMA-13B 比 GPT-3 还高出几个百分点。


数学推理


在表 7 中,研究者将其与 PaLM 和 Minerva (Lewkowycz et al., 2022) 进行了对比。在 GSM8k 上,他们观察到 LLaMA65B 优于 Minerva-62B,尽管它没有在数学数据上进行过微调。


代码生成


如表 8 所示,对于类似的参数数量,LLaMA 的表现是优于其他一般模型的,如 LaMDA 和 PaLM,这些模型没有经过专门的代码训练或微调。在 HumanEval 和 MBPP 上,13B 以上参数的 LLaMA 超过了 LaMDA 137B。LLaMA 65B 也优于 PaLM 62B,即使它的训练时间更长。


大规模多任务语言理解


研究者使用基准所提供的例子,在 5-shot 的情况下评估模型,并在表 9 中展示了结果。在这个基准上,他们观察到 LLaMA-65B 在大多数领域都落后于 Chinchilla70B 和 PaLM-540B 平均几个百分点。一个潜在的解释是,研究者在预训练数据中使用了数量有限的书籍和学术论文,即 ArXiv、Gutenberg 和 Books3,总和只有 177GB,而这些模型是在高达 2TB 的书籍上训练的。Gopher、Chinchilla 和 PaLM 所使用的大量书籍也可以解释为什么 Gopher 在这个基准上的表现优于 GPT-3,而在其他基准上却不相上下。


训练期间的性能变化


在训练期间,研究者跟踪了 LLaMA 模型在一些问题回答和常识性基准上的表现,结果如图 2 所示。在大多数基准上,性能稳步提高,并与模型的训练困惑度呈正相关(见图 1)。



相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
4月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
9月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
396 17
|
10月前
|
人工智能 Linux API
119K star!无需GPU轻松本地部署多款大模型,DeepSeek支持!这个开源神器绝了
"只需一行命令就能在本地运行Llama 3、DeepSeek-R1等前沿大模型,支持Windows/Mac/Linux全平台,这个开源项目让AI开发从未如此简单!"
646 0
|
7月前
|
人工智能 数据挖掘 API
Kimi K2开源炸场,1万亿参数碾压GPT-4.1,成本仅Claude 4的1/5!
月之暗面开源的万亿参数大模型Kimi K2引发行业震动,48小时内即登顶OpenRouter API调用榜,GitHub项目激增200%。该模型在代码生成、Agent任务及中文创作上超越Claude 4,标志着中国大模型首次在三大核心能力上达到全球顶尖水平。
|
10月前
|
机器学习/深度学习 人工智能 前端开发
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
Meta最新开源的SWEET-RL框架通过优化多轮交互任务的信用分配机制,使Llama-3.1-8B模型在协作推理任务中的表现提升6%,性能达到顶尖大模型水平。
542 33
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
|
9月前
|
人工智能 API 开发者
狂揽7.5k星!这款开源API网关彻底解放开发者:一键聚合GPT-4、Suno、Midjourney,还能在线充值!
New API 是一款基于 One API 二次开发的 AI 模型接口管理与分发系统,支持多种大模型(如 GPT-4、Suno、Midjourney 等)统一封装为 OpenAI 格式接口调用。其核心功能包括多模型统一网关、企业级权限管控、“推理力度”分级、无魔法访问全球 AI 服务、灵活计费体系及开发者友好设计。技术架构采用 Golang + Gin 框架,支持高并发低延迟,适用于企业内部 AI 中台、多模型 SaaS 平台、学术研究协作及个人开发者工具等场景。项目开源地址:https://github.com/kingbug/new-api。
3105 6
|
10月前
|
人工智能 搜索推荐 开发者
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
OpenAI最新开源的BrowseComp基准包含1266个高难度网络检索问题,覆盖影视、科技、艺术等九大领域,其最新Deep Research模型以51.5%准确率展现复杂信息整合能力,为AI代理的浏览能力评估建立新标准。
747 4
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
|
11月前
|
人工智能 自然语言处理 API
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
Proxy Lite 是一款开源的轻量级视觉语言模型,支持自动化网页任务,能够像人类一样操作浏览器,完成网页交互、数据抓取、表单填写等重复性工作,显著降低自动化成本。
860 11
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
|
10月前
|
编解码 开发者
ImagePulse图律脉动数据集开源发布:解码GPT-4o级图像生成能力,四大原子数据集+自动生成工具开放
ImagePulse图律脉动数据集开源发布:解码GPT-4o级图像生成能力,四大原子数据集+自动生成工具开放
318 3
|
11月前
|
机器学习/深度学习 人工智能 物联网
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
MiniMind 是一个开源的超小型语言模型项目,帮助开发者以极低成本从零开始训练自己的语言模型,最小版本仅需25.8M参数,适合在普通个人GPU上快速训练。
2156 10
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定

热门文章

最新文章