DAMO-YOLO项目原作解读:兼顾速度与精度的高效目标检测框架

简介: DAMO-YOLO项目原作解读:兼顾速度与精度的高效目标检测框架

目标检测是计算机视觉中的一个重要领域,它主要研究的是如何从输入的图像或者点云中定位出感兴趣物体的位置,在视觉 AI 的应用落地中发挥着基石的作用。现在市面上已经涌现了许多优秀易用的目标检测框架,但是在目标检测应用领域,仍然有以下几个重点问题没有解决:一是模型尺度单一,难以充分发挥用户的芯片算力。二是模型的多尺度检测能力弱,难以覆盖复杂多变的检测场景。三是模型的速度-精度曲线不够理想,在针对速度限制取舍模型时,会发现精度损失难以接受。

针对上述几个问题,结合阿里达摩院的技术积累,DAMO-YOLO 提出了自己的解法。DAMO-YOLO 中引入了 TinyNAS 技术,使得用户可以根据硬件算力进行低成本的检测模型定制,提高硬件使用效率并获得更高的精度。DAMO-YOLO 中还对检测模型的 neck、head 结构进行重新设计,创新性提出了 Heavy-Neck 模型设计范式,显著提升了模型的多尺度检测能力。最后,DAMO-YOLO 还提供了一套支持全尺度模型、异构鲁棒的蒸馏方案,实现无痛涨点,充分发挥模型潜力。此外,为了方便用户使用 DAMO-YOLO 解决自己的问题,还开源了多个工业应用模型。

机器之心最新一期线上分享邀请到了阿里巴巴达摩院算法工程师许贤哲,为大家解读他们近期的工作 DAMO-YOLO。


分享主题:DAMO-YOLO:兼顾速度与精度的高效目标检测框架

分享嘉宾:许贤哲,阿里巴巴达摩院算法工程师,天津大学通信与信息系统硕士,先后研究行人重识别、无监督学习、目标检测等方向,多次夺得 ICCV、CVPR 竞赛冠军,并担任 ECCV、CVPR 等会议审稿人。

分享摘要:DAMO-YOLO 是一个面向工业落地的目标检测框架,兼顾模型速度与精度,其训练的模型效果超越了目前的一众 YOLO 系列方法,并且仍然保持极高的推理速度。DAMO-YOLO 引入 TinyNAS 技术,使得用户可以根据硬件算力进行低成本的检测模型定制,提高硬件利用效率并且获得更高精度。DAMO-YOLO 还对检测模型中的 neck、head 结构设计,以及训练时的标签分配、数据增广等关键因素进行了优化,取得了精度和速度的全面提升。最后,DAMO-YOLO 提出了一套全尺度蒸馏方案,进一步实现全尺度模型的无痛涨点。具体细节可以参考我们的开源代码和技术报告。另外,为了方便用户使用 DAMO-YOLO 解决自己的问题,还开源了多个工业应用模型。

相关链接:

1)SOTA!模型平台项目主页链接:

https://sota.jiqizhixin.com/project/damo-yolo

2)论文链接:

https://arxiv.org/pdf/2211.15444v2.pdf

3)代码仓库:

https://github.com/tinyvision/damo-yolo

相关文章
|
5月前
|
机器学习/深度学习 监控 数据可视化
基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)
本系统结合 YOLOv8检测模型 与 PyQt5界面工具,不仅提供完整训练流程,还支持自定义数据集训练,帮助用户快速搭建 开箱即用的打架斗殴行为识别系统。
703 28
基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)
|
机器学习/深度学习 编解码 算法
超详细!手把手带你轻松掌握 MMDetection 整体构建流程(一)
作为系列文章的第一篇解读,本文主要是从整体框架构建角度来解析,不会涉及到具体算法和代码,希望通过本文讲解: - MMDetection 整体构建流程和思想 - 目标检测算法核心组件划分 - 目标检测核心组件功能
1246 0
超详细!手把手带你轻松掌握 MMDetection 整体构建流程(一)
|
算法 Go 文件存储
DAMO-YOLO: 兼顾速度与精度的新目标检测框架
我们团队最近开源了DAMO-YOLO!其效果达到了YOLO系列的SOTA,欢迎各位试用!​简介DAMO-YOLO是一个兼顾速度与精度的目标检测框架,其效果超越了目前的一众YOLO系列方法,在实现SOTA的同时,保持了很高的推理速度。DAMO-YOLO是在YOLO框架基础上引入了一系列新技术,对整个检测框架进行了大幅的修改。具体包括:基于NAS搜索的新检测backbone结构,更深的neck结构,精
1488 0
DAMO-YOLO: 兼顾速度与精度的新目标检测框架
|
29天前
|
存储 Linux 异构计算
使用阿里云GPU服务器部署DeepSeek满血版模型——2026年最新教程
本文介绍如何在阿里云ebmgn8v GPU实例上,使用SGLang部署671B参数的开源MoE模型DeepSeek-V3/R1,实现开箱即用的高效推理服务,涵盖环境配置、模型下载与推理测试全流程。
|
人工智能 数据可视化 计算机视觉
Ultralytics YOLO11来啦!更快!更强!
YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的 Joseph Redmon 和 Ali Farhadi 开发。
Ultralytics YOLO11来啦!更快!更强!
|
JavaScript 前端开发
typeScript基础(8)_ts类型断言
本文介绍了TypeScript中的类型断言,它用于在编译时告诉TypeScript某个对象具有特定的类型,即使它看起来不具备。类型断言可以用来访问一个类型上存在而另一个类型上不存在的属性或方法。需要注意的是,类型断言并不会在运行时改变JavaScript的行为,因此如果断言不当,运行时仍然可能出错。文章还提醒避免将类型断言为`any`类型或进行多重断言。
284 2
|
小程序 JavaScript 开发者
微信小程序构建npm
微信小程序构建npm
965 4
|
机器学习/深度学习 搜索推荐 数据挖掘
详解相似度计算方法及其应用场景
详解相似度计算方法及其应用场景
|
缓存 Ubuntu Linux
error while loading shared libraries: libxcb-icccm.so.4: cannot open shared object file: No such file or directory 问题如何处理
【5月更文挑战第16天】error while loading shared libraries: libxcb-icccm.so.4: cannot open shared object file: No such file or directory 问题如何处理
2833 0
|
编解码 计算机视觉
名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA(2)
名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA
514 0

热门文章

最新文章