ChatExcel?

简介: ChatExcel?

前言


大家好,我是章北海mlpy

最近在浅学LangChain,在大模型时代,感觉这玩意很有前途。

LangChain是一个开源的应用开发框架,目前支持Python和TypeScript两种编程语言。

它赋予LLM两大核心能力:数据感知,将语言模型与其他数据源相连接;代理能力,允许语言模型与其环境互动。

LangChain的主要应用场景包括个人助手、基于文档的问答、聊天机器人、查询表格数据、代码分析等。


正文


之前大火的ChatPDF应该就是用LangChain实现的昨晚又看到一个有趣的实例:Chat with CSV&Excel using LangChain and OpenAI,蛮粗糙的,感觉可以用Gradio加个前端,或许有点意思。

https://github.com/amrrs/csvchat-langchain

源代码有TypeError的bug,我改了一下,可以跑通,有感兴趣的可以直接复制。

# -*- coding: utf-8 -*-
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import os
os.environ["OPENAI_API_KEY"] = "sk-你的API"
!wget https://gist.githubusercontent.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6/raw/92200bc0a673d5ce2110aaad4544ed6c4010f687/pokemon.csv 
# Load the documents
import csv
loader = CSVLoader(file_path='/Users/huhaiyang/projs/myrepo/pokemon.csv', csv_args={
    'delimiter': ','})
# Create an index using the loaded documents
index_creator = VectorstoreIndexCreator()
docsearch = index_creator.from_loaders([loader])
# Create a question-answering chain using the index
chain = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.vectorstore.as_retriever(), input_key="question")
# Pass a query to the chain
query = "Do you have a column called age?"
response = chain({"question": query})
print(response['result'])

我简单测试了,胡说八道含量很高。

9.png

这个实例太粗糙了,后期再深入研究吧,看是否可以达到简单统计,甚至实现透视表的程度。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
机器学习/深度学习 分布式计算 算法
java在机器学习的应用
java在机器学习的应用
255 1
|
网络协议 安全 前端开发
springcloud服务连接超时
springcloud服务连接超时的原因竟然是linux的参数设置原因
|
安全 Linux 网络安全
组网神器WireGuard安装与配置教程(超详细)
组网神器WireGuard安装与配置教程(超详细)
39639 2
|
数据采集 人工智能 JSON
大模型微调实战指南:从零开始定制你的专属 LLM
企业落地大模型常遇答非所问、风格不符等问题,因通用模型缺乏领域知识。微调(Fine-tuning)可让模型“学会说你的语言”。本文详解微调原理与PEFT技术,结合Hugging Face与LoRA实战,教你用少量数据在消费级GPU打造专属行业模型,提升垂直场景表现。
504 9
|
8月前
|
机器学习/深度学习 自然语言处理 搜索推荐
《让机器人读懂你的心:情感分析技术融合奥秘》
情感分析技术正赋予机器人理解人类情绪的能力,使其从冰冷的工具转变为贴心伙伴。通过语音、面部表情和文本等多模态信息,机器人可精准识别情绪并做出相应反应。然而,多模态数据融合、个性化情感理解及自然情感表达仍是技术难点。一旦突破,机器人将在医疗、教育和养老等领域大放异彩,成为患者助手、个性化教师和老人陪伴者,开启人机交互新纪元。这不仅是一次技术飞跃,更是机器人迈向情感世界的深刻变革。
564 0
|
自然语言处理 前端开发 网络协议
用 Qwen2.5-Coder 开发一个网页应用,完全0基础,已部署上线,代码开源!
利用Qwen2.5-Coder成功开发了一个简洁实用的网页应用,该应用能够在浏览器Tab标题中显示北京时间,并在页面中集成了实时时间显示和番茄时钟功能。通过Qwen2.5-Coder的强大代码生成能力,从零基础开始,仅需简单提示便完成了HTML、CSS和JavaScript的编写。经过几次优化调整,最终实现了美观且功能完善的网页应用,并顺利部署至Vercel平台,满足了作者在全屏模式下查看时间的需求。
用 Qwen2.5-Coder 开发一个网页应用,完全0基础,已部署上线,代码开源!
|
9月前
|
数据采集 监控 数据可视化
11.7K Star!这个分布式爬虫管理平台让多语言协作如此简单!
分布式爬虫管理平台Crawlab,支持任何编程语言和框架的爬虫管理,提供可视化界面、任务调度、日志监控等企业级功能,让爬虫开发管理效率提升300%!
376 1
|
5G UED
5G NR中的寻呼过程
【8月更文挑战第31天】
451 1
|
消息中间件 Java Kafka
实时计算 Flink版产品使用合集之可以将数据写入 ClickHouse 数据库中吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
474 1