模拟大脑功能,这个AI模型真正实现像人一样持续学习

简介: 模拟大脑功能,这个AI模型真正实现像人一样持续学习

本文中,新加坡科技设计大学的研究团队设计了一个受人类大脑启发的 AI 模型,能够自然地进行持续学习,在没有存储数据的类增量学习场景中也表现得很好。


正如图像处理、智能医疗、自动驾驶汽车和智慧城市等各个 AI 领域的突破所展现的那样,深度学习无疑正在经历着黄金期。在未来十年左右,AI 和计算机系统将最终具备类人的学习和思考能力,以处理持续的信息流,与现实世界进行交互。



但是,当前的 AI 模型在连续进行新信息训练时会遭受性能损失。这是因为每当生成新数据时,都会在已有数据之上写入,从而擦除以前的信息。这种效应被称为「灾难性遗忘」。稳定性 - 可塑性困境导致 AI 模型需要更新其记忆以不断地适应新信息,同时保持当前知识的稳定性。这一问题阻止了 SOTA AI 模型持续地从现实世界信息中学习。

同时,边缘计算系统允许将计算从云存储和数据中心转移到原始来源附近,例如连接物联网的设备。在资源有限的边缘计算设备上高效地应用持续学习仍然是一个挑战,尽管领域内也提出了很多持续学习模型来解决这一问题。传统模型需要高计算能力和大存储容量。


最近,新加坡科技设计大学(SUTD)的一个研究团队设计了一种能够实现高能效持续学习系统的新型模型,研究《Continual Learning Electrical Conduction in Resistive-Switching-Memory Materials》发表在了期刊《先进理论与模拟》上。



论文地址:https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202200226

该团队提出一种受大脑启发的模型—Brain-Inspired Replay(BIR),它可以自然地进行持续学习。BIR 模型基于人工神经网络和变分自编码器来模拟人类大脑的功能,在没有存储数据的类增量学习场景中也能表现得很好。研究者还使用 BIR 模型来表示在数字存储系统中使用电流的导电丝生长。


下图左上为生成式回放设置,右上为训练具有生成式回放的人工神经网络;左下和右下分别为常规以及 BIR 模型的归一化电流精度。



论文通讯作者之一、助理教授 Loke 解释称,「在 BIR 中,知识被保存在训练过的模型中,从而在引入额外任务时将性能损失降至最低,并无需参考以往工作中的数据。因此,这种做法可以大量节能。」

他还补充道,「在无存储数据的情况下,在当前学习任务的合规性挑战上实现了 89% 的 SOTA 准确率,这比传统持续学习模型高了约两倍,并且实现了高能效。」

此外,为了使 BIR 模型能够独立处理现实世界的现场信息,该团队计划在下一阶段的研究中扩展它的可调能力。


Loke 表示,这项研究基于小规模演示,仍处于早期阶段。不过,采用这种方法有望使得边缘 AI 系统在无人类控制的情况下独立发展。


原文链接:https://techxplore.com/news/2022-08-strategies-humans.html

相关文章
|
2月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
1772 120
|
2月前
|
人工智能 自然语言处理 算法
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
413 9
|
3月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1635 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
308 120
|
2月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
459 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
2月前
|
传感器 人工智能 数据安全/隐私保护
学生不应依赖AI写作业,怕大脑用进废退。职场人呢?
过度依赖AI将削弱深度思考能力,创新源于主动“跨界整合”。职场人需警惕“思维外包”,善用AI为“杠杆”而非“拐杖”,保持自主思考方能突破边界。法思诺创新学院倡导:创新可训练,大脑越用越强。
124 2
|
2月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
272 6
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
拔俗AI学伴智能体系统:基于大模型与智能体架构的下一代个性化学习引擎
AI学伴智能体系统融合大模型、多模态理解与自主决策,打造具备思考能力的个性化学习伙伴。通过动态推理、长期记忆、任务规划与教学逻辑优化,实现千人千面的自适应教育,助力因材施教落地,推动教育公平与效率双提升。(238字)