ECCV 2022 Oral | 无需微调即可推广,上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架

简介: ECCV 2022 Oral | 无需微调即可推广,上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架
来自上海交通大学 MediaBrain 团队和上海人工智能实验室智慧医疗团队等的研究人员提出了一种基于配准的少样本异常检测框架 RegAD,用于学习多个异常检测任务之间共享的通用模型。RegAD 无需模型参数调整,仅利用少量正常样本,就可以直接应用于新的异常检测任务。


近年来,异常检测在工业缺陷检测、医疗诊断,自动驾驶等领域有着广泛的应用。“异常”通常定义为 “正常” 的对立面,即所有不符合正常规范的样本。通常来说,相比于正常,异常事件的种类是不可穷尽的,且十分稀有,难以收集,因此不可能收集详尽的异常样本进行训练。因此,近期关于异常检测的研究主要致力于无监督学习,即仅使用正常样本,通过使用单类别(one-class)分类,图像重建(reconstruction),或其他自监督学习任务对正常样本进行建模,之后,通过识别不同于模型分布的样本来检测异常。


大多数现有的异常检测方法都专注于为每个异常检测任务训练一个专用模型。然而,在诸如缺陷检测之类的真实场景中,考虑到要处理数百种工业产品,为每种产品均收集大量训练集是不划算的。对此,上海交通大学 MediaBrain 团队和上海人工智能实验室智慧医疗团队等提出了一个基于配准的少样本异常检测框架,通过学习多个异常检测任务之间共享的通用模型,无需进行模型参数调整,便可将其推广到新的异常检测任务。目前,这项研究已被 ECCV2022 接收为 Oral 论文,完整训练代码及模型已经开源。



方法简介

在这项工作中,少样本异常检测通用模型的训练受到了人类如何检测异常的启发。事实上,当尝试检测图像中的异常时,人们通常会将该检测样本与某个已经被确定为正常的样本进行比较,从而找出差异,有差异的部分就可以被认为是异常。为了实现这种类似于人类的比较的过程,本文作者采用了配准技术。本文作者认为,对于配准网络而言,只要知道如何比较两个极度相似的图像,图像的实际语义就不再重要,因此模型就更能够适用于从未见过的异常检测新任务。配准特别适用于少样本异常检测,因为配准可以非常方便地进行跨类别推广,模型无需参数微调就能够快速应用于新的异常检测任务。


上图概述了基于配准的少样本异常检测的框架。与常规的异常检测方法(one-model-per-category)不同,这项工作(one-model-all-category)首先使用多类别数据联合训练一个基于配准的异常检测通用模型。来自不同类别的正常图像一起用于联合训练模型,随机选择来自同一类别的两个图像作为训练对。在测试时,为目标类别以及每个测试样本提供了由几个正常样本组成的支撑集。给定支撑集,使用基于统计的分布估计器估计目标类别注册特征的正态分布。超出统计正态分布的测试样本被视为异常。


这项工作采用了一个简单的配准网络,同时参考了 Siamese [1], STN [2] 和 FYD [3]。具体地说,以孪生神经网络(Siamese Network)为框架,插入空间变换网络(STN)实现特征配准。为了更好的鲁棒性,本文作者利用特征级的配准损失,而不是像典型的配准方法那样逐像素配准,这可以被视为像素级配准的松弛版本。

实验结果

在与其他少样本异常检测方法的比较上,RegAD 无论在检测性能、适用到新类别数据的自适应时间上,相比于基准方法 TDG [4] 和 DiffNet [5] 都有显著的优势。这是由于其他的方法都需要针对新的类别数据进行模型的多轮迭代更新。另外,RegAD 相比于没有进行多类别特征配准联合训练的版本(RegAD-L),性能也得到了显著的提升,体现出基于配准的通用异常检测模型的训练是十分有效的。本文在异常检测数据集 MVTec [6] 和 MPDD [7] 上进行实验。更多的实验结果和消融实验可参考原论文。


此外,作者还展示了异常定位可视化的结果。可以看到,联合训练可以使得模型的异常定位变得更加准确。


T-SNE 的可视化也显示出,基于配准的训练可以使得同类别的正常图像特征变得更加紧凑,从而有利于异常数据的检出。


总结

这项工作主要探索了异常检测的一个具有挑战性但实用的设置:1)训练适用于所有异常检测任务的单一模型(无需微调即可推广);2)仅提供少量新类别图像(少样本);3)只有正常样本用于训练(无监督)。尝试探索这种设置是异常检测走向实际大规模工业应用的重要一步。为了学习类别无关的模型,本文提出了一种基于比较的解决方案,这与流行的基于重建或基于单分类的方法有很大不同。具体采用的配准模型建立在已有的配准方案基础上,充分参考了现有的杰出工作 [1,2,3],在不需要参数调整的前提下,在新的异常检测数据上取得了令人印象深刻的检测效果。

参考文献[1] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. CVPR. 2021.[2] Max Jaderberg et. al. Spatial transformer networks. NeurIPS. 2015.[3] Ye Zheng et. al. Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization. arXiv:2110.04538. 2021.[4] Shelly Sheynin et. al. A hierarchical transformation-discriminating generative model for few shot anomaly detection. ICCV. 2021.[5] Marco Rudolph et.al. Same same but differnet: Semi-supervised defect detection with normalizing flows. WACV. 2021.[6] Paul Bergmann et. al. MVTec AD--A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. CVPR. 2019.[7] Stepan Jezek et. al. Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions. ICUMT. 2021.

相关文章
|
存储 人工智能 搜索推荐
SuperAGI 一个开发优先的开源自主人工智能代理框架
供应、生成和部署自主人工智能代理
|
2月前
|
人工智能 安全 算法
上交大、上海人工智能实验室开源首个多轮安全对齐数据集 SafeMTData
最近,以 OpenAI o1 为代表的 AI 大模型的推理能力得到了极大提升,在代码、数学的评估上取得了令人惊讶的效果。OpenAI 声称,推理可以让模型更好的遵守安全政策,是提升模型安全的新路径。
|
3月前
|
机器学习/深度学习 移动开发 自然语言处理
基于人工智能技术的智能导诊系统源码,SpringBoot作为后端服务的框架,提供快速开发,自动配置和生产级特性
当身体不适却不知该挂哪个科室时,智能导诊系统应运而生。患者只需选择不适部位和症状,系统即可迅速推荐正确科室,避免排错队浪费时间。该系统基于SpringBoot、Redis、MyBatis Plus等技术架构,支持多渠道接入,具备自然语言理解和多输入方式,确保高效精准的导诊体验。无论是线上医疗平台还是大型医院,智能导诊系统均能有效优化就诊流程。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述
人工智能(AI)领域涉及众多框架和模型,这些框架和模型为开发人员提供了强大的工具,以构建和训练各种AI应用。以下是一些常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述。
424 1
|
6月前
|
机器学习/深度学习 人工智能 算法
人工智能伦理框架:构建AI的道德指南针
【7月更文挑战第16天】随着人工智能技术的快速发展,其对社会的深远影响引起了广泛关注。本文探讨了构建人工智能伦理框架的必要性,并提出了一套基于四大原则的伦理指导方针:透明度、公正性、责任归属和隐私保护。文章旨在为AI系统的设计与部署提供道德指南,确保技术进步与人类价值观相协调。
216 3
|
6月前
|
设计模式 人工智能 测试技术
利用人工智能ChatGPT自动生成基于PO的数据驱动测试框架
PO(PageObject)设计模式将某个页面的所有元素对象定位和对元素对象的操作封装成一个 Page 类,并以页面为单位来写测试用例,实现页面对象和测试用例的分离。 数据驱动测试(DDT)是一种方法,其中在数据源的帮助下重复执行相同顺序的测试步骤,以便在验证步骤进行时驱动那些步骤的输入值和/或期望值。
|
7月前
|
人工智能 开发框架 前端开发
探索移动应用开发的未来:从跨平台框架到人工智能集成
【6月更文挑战第20天】随着移动设备的普及,移动应用开发领域不断演进,涌现出多种创新技术和工具。本文将深入探讨跨平台开发框架的兴起、人工智能在移动应用中的集成以及未来移动操作系统的发展趋势。我们将分析Flutter和React Native等流行框架如何简化开发流程,同时考察AI技术如何提升用户体验。此外,文章还将预测移动操作系统的发展方向,为开发者提供前瞻性的见解和建议。
94 3
|
7月前
|
人工智能
人工智能大模型——零样本提示
**零样本提示**是向LLM如ChatGPT提问时不提供示例的方式,适用于目标明确、问题简单和答案固定的场景。例如,翻译请求或简单算术问题。在实践中,清晰、简洁的提示能获得更好响应。案例展示包括翻译和定义解释,ChatGPT能有效回应。理解其应用和技巧的同时,也应注意其对复杂情境理解的限制。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
移动应用开发的未来趋势:跨平台框架与人工智能的融合
在数字化时代,移动应用开发领域正经历着前所未有的变革。本文将探讨移动应用开发的新动向,特别是跨平台框架的兴起和人工智能技术的整合,以及它们如何重塑开发者的工作方式和用户的互动体验。通过分析当前市场数据、技术发展趋势及案例研究,我们将揭示这些创新如何推动移动应用向更高效、更智能的方向发展。
168 0
|
6月前
|
机器学习/深度学习 人工智能 搜索推荐
移动应用开发的未来趋势:跨平台框架与人工智能的融合
【7月更文挑战第11天】随着移动设备的普及,移动应用开发领域正经历着前所未有的变革。本文将深入探讨当前移动应用开发的新趋势,特别关注跨平台框架和人工智能技术的结合如何推动行业发展。我们将分析Flutter、React Native等跨平台框架的优势,以及它们如何简化开发流程和降低成本。同时,我们也将讨论人工智能在移动应用中的集成,包括智能助手、个性化服务和自动化测试等方面。通过这些技术的应用案例,我们将展示未来移动应用开发的潜力和挑战。