7 Papers & Radios | DeepMind「通才」AI智能体Gato;计算机理论顶会STOC2022奖项公布(2)

简介: 7 Papers & Radios | DeepMind「通才」AI智能体Gato;计算机理论顶会STOC2022奖项公布

论文 5:Locally Testable Codes with constant rate, distance, and locality


摘要:本地可测试代码(locally testable code, LTC)是具有属性测试器的纠错代码。测试者读取随机选择的 q 个比特,并以与它们和代码之间的距离成正比的概率拒绝单词。参数 q 为被称为测试者的位置。

LTC 最开始是作为 PCP 的重要组件进行研究的,此后便发展成为单独的主题了。高速率 LTC 在实践中可能非常有用:在尝试对接收到的字进行解码之前,我们首先可以通过快速测试它是否接近代码来节省时间。不过,一个尚未解决的问题在于是否存在「c^3-LTCs」,即具有恒定速率、恒定距离和恒定位置的 LTC。

在本文中,研究者基于一个新的二维复合体构建这样的代码,并称之为「左右 Cayley 复合体」。这本质上是一个图,除了点和边之外还有正方形。他们的代码可以被视为(一维)扩展器代码的二维版本,其中代码字是正方形而非边上的函数。

算法 1:迭代解码算法。

推荐:计算机理论顶会 STOC2022 最佳论文。

论文 6:GANimator: Neural Motion Synthesis from a Single Sequence


摘要:近日,来自苏黎世联邦理工学院、谷歌、芝加哥大学等机构的研究者开发了一个框架 GANimator,该框架能够产生不同且逼真的动作,只使用一个单一的训练序列。这一框架大大简化了数据收集过程,同时允许创建逼真的动作变化,还可以准确地捕捉单独动作序列细节。该研究入选 SIGGRAPH 2022。

我们先来看如下效果图,左边输入的是单个动作序列,右边是生成结果:


群体动画。GANimator 框架训练了一个单一的螃蟹舞蹈序列,可以生成各种新颖的运动:


上述示例说明 GANimator 框架是生成新动作的有效工具,它可以仅使用短动作序列作为输入来合成较长、多样和高质量的动作序列。

动作表征:研究者通过一个𝑇姿势的时序集来表征动作序列,该时序集由足部关节位移 O ϵ R^𝑇×3 和关节旋转 R ϵ R^𝑇×𝐽𝑄组成,其中𝐽表示关节数,𝑄表示旋转特征数。为了减少常见的足部滑动伪影,研究者在表征中加入了足部接触标签。并且,为了简化注释,他们还将连接特征的度量空间表示成了 M_𝑇 ≡ R^𝑇×(𝐽 𝑄+𝐶+3)。

研究者提出的动作生成框架如下图 2 所示。该框架由𝑆个粗放到精细(coarse-to-fine)对抗生成网络组成,每个负责生成具有特定帧数 {𝑇_𝑖 }^𝑆_𝑖=1 的动作序列。

网络构建块:首先是生成器。研究者采用的生成器𝐺_𝑖包含一个全卷积神经网络𝑔_𝑖 (·),该网络由具有一些骨骼感知卷积层和其后的非线性层。由于该网络的主要作用是添加缺失的高频细节,因此他们使用残差结构,因此对于 2 ≤ 𝑖 ≤ 𝑆,得到如下公式(4)。

下图为 3 则为生成器架构概览。

其次是鉴别器。虽然经典 GAN 架构中的鉴别器输出单个标量,指示输入被分类为「真」或「假」。但对于训练数据中单个序列的情况,这种结构会导致模式崩溃,原因是生成器通常过拟合序列。最后是骨骼感知算子。研究者采用骨骼感知卷积作为框架基础构建块。骨骼感知算子需要一个由一组关节(顶点)和临接表(边)定义的固定骨骼拓扑。由于网络在单个序列上运行,他们调整该拓扑以匹配输入序列。这允许在任何骨骼拓扑上操作,并且不需要将输入动作重新定位到特定的骨骼结构。

推荐:ETH、谷歌用单个序列玩转神经动作合成,入选 SIGGRAPH。

论文 7:Translation between Molecules and Natural Language


摘要:来自伊利诺伊大学厄巴纳 - 香槟分校和 Google X 的研究者通过提出两项新任务来实现分子与自然语言转换的研究目标:1)为分子生成描述;2)在文本指导下从头生成分子。

如下图所示,文本指导分子生成任务是创建一个与给定自然语言描述相匹配的分子,这将有助于加速多个科学领域的研究。

在多模态模型领域,自然语言处理和计算机视觉 (V+L) 的交叉点已被广泛研究。通过自然语言实现对图像的语义级控制已取得一些进展,人们对多模态数据和模型越来越感兴趣。

该研究提出的分子 - 语言任务与 V+L 任务有一些相似之处,但也有几个特殊的难点:1)为分子创建注释需要大量的专业知识,2)因此,很难获得大量的分子 - 描述对,3) 同一个分子可以具有许多功能,需要多种不同的描述方式,这导致 4) 现有评估指标(例如 BLEU)无法充分评估这些任务。

为了解决数据稀缺的问题,该研究提出了一种新的自监督学习框架 MolT5(Molecular T5),其灵感来源于预训练多语言模型的最新进展(Devlin et al., 2019; Liu et al., 2020)。MolT5 首先使用简单的去噪目标在大量未标记的自然语言文本和分子字符串上预训练模型。之后,预训练模型在有限的黄金标准注释上进行微调。

此外,为了充分评估分子描述或生成模型,该研究提出了一个名为 Text2Mol 的新指标(Edwards et al., 2021)。Text2Mol 重新调整了检索模型的用途,以分别评估实际分子 / 描述和生成的描述 / 分子之间的相似性。

图 3 为 MolT5 架构图。该研究首先使用 T5.1.1(T5 的改进版本)的公共检查点(public checkpoints)之一初始化编码器 - 解码器 Transformer 模型。之后,他们使用「replace corrupted spans」目标对模型进行预训练。具体而言,在每个预训练 step 中,该研究都会采样一个包含自然语言序列和 SMILES 序列的 minibatch。对于每个序列来说,研究者将随机选择序列中的一些单词进行修改。每个连续 span 中的 corrupted token 都被一个 sentinel token 替换(如图 3 中的 [X] 和 [Y] 所示)。接下来的任务是预测 dropped-out span。

推荐:给几句话就能生成分子,看见分子也能生成描述,神秘的 Google X 把多模态 AI 做成了黑科技。


ArXiv Weekly Radiostation

机器之心联合由楚航、罗若天发起的ArXiv Weekly Radiostation,在 7 Papers 的基础上,精选本周更多重要论文,包括NLP、CV、ML领域各10篇精选,并提供音频形式的论文摘要简介,详情如下:
10 NLP Papers音频:00:0019:46


本周 10 篇 NLP 精选论文是:


1. CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation.  (from Jiawei Han)2. Multi-level Contrastive Learning for Cross-lingual Spoken Language Understanding.  (from Jian Pei)3. KETOD: Knowledge-Enriched Task-Oriented Dialogue.  (from Bing Liu)4. Identifying concept libraries from language about object structure.  (from Joshua B. Tenenbaum)5. Structured, flexible, and robust: benchmarking and improving large language models towards more human-like behavior in out-of-distribution reasoning tasks.  (from Joshua B. Tenenbaum)6. Richer Countries and Richer Representations.  (from Dan Jurafsky)7. Problems with Cosine as a Measure of Embedding Similarity for High Frequency Words.  (from Dan Jurafsky)8. Building Machine Translation Systems for the Next Thousand Languages.  (from Zhifeng Chen, Yonghui Wu)9. FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue.  (from Lise Getoor)10. Empowering parameter-efficient transfer learning by recognizing the kernel structure in self-attention.  (from Yang Liu, Dilek Hakkani-Tur)

相关文章
|
人工智能 自然语言处理 算法
谷歌DeepMind研究再登Nature封面,隐形水印让AI无所遁形
近日,谷歌DeepMind团队在《自然》期刊上发表了一项名为SynthID-Text的研究成果。该方法通过引入隐形水印,为大型语言模型(LLM)生成的文本添加统计签名,从而实现AI生成文本的准确识别和追踪。SynthID-Text采用独特的Tournament采样算法,在保持文本质量的同时嵌入水印,显著提高了水印检测率。实验结果显示,该方法在多个LLM中表现出色,具有广泛的应用潜力。论文地址:https://www.nature.com/articles/s41586-024-08025-4。
446 26
|
11月前
|
人工智能 自然语言处理
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
谷歌推出专为药物研发设计的TxGemma大模型,具备药物特性预测、生物文献筛选、多步推理等核心能力,提供20亿至270亿参数版本,显著提升治疗开发效率。
373 7
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
|
11月前
|
人工智能 vr&ar 图形学
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
牛津大学与谷歌联合推出的Bolt3D技术,能在单个GPU上仅用6.25秒从单张或多张图像生成高质量3D场景,基于高斯溅射和几何多视角扩散模型,为游戏、VR/AR等领域带来革命性突破。
567 2
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
1553 62
AI经营|多Agent择优生成商品标题
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
1347 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
12月前
|
人工智能 芯片 内存技术
谷歌Deepmind的CEO称Deepseek的AI模型是中国“最好的作品”,但炒作“夸大其词”
谷歌Deepmind的CEO称Deepseek的AI模型是中国“最好的作品”,但炒作“夸大其词”
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
1134 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
825 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
400 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
1142 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统

热门文章

最新文章