JPDA 架构研究7 - Agent利用环境指针访问VM(线程组管理篇)

简介:

引入:

上篇文章中我们讨论了Agent利用环境指针访问VM的线程操作,这里讨论线程组操作。


分类3:线程组操作

a.GetTopThreadGroups.让Agent获取VM中的所有全局的线程组。

jvmtiError
GetTopThreadGroups(jvmtiEnv* env,
            jint* group_count_ptr,
            jthreadGroup** groups_ptr)

函数会返回全局的线程组的数量和线程组的列表。


b.GetThreadGroupInfo。获取某个线程组的信息。

typedef struct {
    jthreadGroup parent;
    char* name;
    jint max_priority;
    jboolean is_daemon;
} jvmtiThreadGroupInfo;
jvmtiError
GetThreadGroupInfo(jvmtiEnv* env,
            jthreadGroup group,
            jvmtiThreadGroupInfo* info_ptr)

从这里可以看出,它会包含线程组的父亲,线程组名字(UTF-8格式),最大优先级,是否守护线程组等信息。


c.GetThreadGroupChildren.获取某指定线程组的孩子们。

jvmtiError
GetThreadGroupChildren(jvmtiEnv* env,
            jthreadGroup group,
            jint* thread_count_ptr,
            jthread** threads_ptr,
            jint* group_count_ptr,
            jthreadGroup** groups_ptr)

因为线程组和线程的关系也遵守设计模式中的Composite Design Pattern.所以某个线程组的孩子可以是子线程组,也可以是一些活着的子线程。所以这里可以看出,它会返回子线程的数量,子线程列表,子线程组数量,子线程组列表。





本文转自 charles_wang888 51CTO博客,原文链接:http://blog.51cto.com/supercharles888/1587695,如需转载请自行联系原作者
目录
相关文章
|
5月前
|
人工智能 运维 安全
配置驱动的动态 Agent 架构网络:实现高效编排、动态更新与智能治理
本文所阐述的配置驱动智能 Agent 架构,其核心价值在于为 Agent 开发领域提供了一套通用的、可落地的标准化范式。
1578 85
|
5月前
|
人工智能 安全 数据可视化
配置驱动的动态Agent架构网络:实现高效编排、动态更新与智能治理
本文系统性地提出并阐述了一种配置驱动的独立运行时Agent架构,旨在解决当前低代码/平台化Agent方案在企业级落地时面临困难,为Agent开发领域提供了一套通用的、可落地的标准化范式。
484 18
配置驱动的动态Agent架构网络:实现高效编排、动态更新与智能治理
|
6月前
|
人工智能 数据可视化 开发者
深度解析基于LangGraph的Agent系统架构设计与工程实践
LangGraph作为Agent 生态中非常热门的框架,今天我将借助 LangGraph,更高效、更优雅的方式构建复杂智能体系统。
1703 2
使用指针访问数组元素
【10月更文挑战第30天】使用指针访问数组元素。
162 3
|
8月前
|
存储 人工智能 前端开发
Google揭秘Agent架构三大核心:工具、模型与编排层实战指南
本文为Google发布的Agent白皮书全文翻译。本文揭示了智能体如何突破传统AI边界,通过模型、工具与编排层的三位一体架构,实现自主推理与现实交互。它不仅详解了ReAct、思维树等认知框架的运作逻辑,更通过航班预订、旅行规划等案例,展示了智能体如何调用Extensions、Functions和Data Stores,将抽象指令转化为真实世界操作。文中提出的“智能体链式组合”概念,预示了未来多智能体协作解决复杂问题的革命性潜力——这不仅是技术升级,更是AI赋能产业的范式颠覆。
2591 1
|
机器学习/深度学习 人工智能 自然语言处理
清华EconAgent获ACL 2024杰出论文:大模型智能体革新计算经济学研究范式
近年来,人工智能的迅猛发展推动了数据驱动建模在宏观经济学领域的应用。清华大学研究团队提出的EconAgent模型,基于大型语言模型,具备类似人类的决策能力,能更准确地模拟个体行为对宏观经济系统的影响。EconAgent在个体异质性、市场动态及宏观经济因素模拟方面表现出色,并具有更好的可解释性和灵活性。然而,其高计算复杂度和部分决策过程的不透明性仍需进一步解决。该成果已在ACL 2024会议上获得杰出论文奖。论文链接:https://arxiv.org/abs/2310.10436v4
553 3
|
机器学习/深度学习 算法 决策智能
北大领衔,多智能体强化学习研究登上Nature子刊
北京大学研究团队近日在《Nature》子刊上发布了一篇关于多智能体强化学习(MARL)的论文,提出了一种高效且可扩展的MARL框架,旨在解决大规模网络控制系统中的决策问题。该框架实现了智能体间的局部通信,减少了通信成本与计算复杂度,并在交通、电力及疫情防控等多个真实场景实验中,显著提升了决策性能。论文链接:https://www.nature.com/articles/s42256-024-00879-7。尽管该研究仍存局限,但为MARL的应用提供了新思路。
478 2
|
10月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
644 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
|
11月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
1020 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
10月前
|
存储 人工智能 自然语言处理
Cursor这类编程Agent软件的模型架构与工作流程
编程Agent的核心是一个强大的大语言模型,负责理解用户意图并生成相应的代码和解决方案。这些模型通过海量文本和代码数据的训练,掌握了广泛的编程知识和语言理解能力。
1034 1