发布日志记录、公开所有代码,Meta开放1750亿参数大模型,媲美GPT-3

简介: 发布日志记录、公开所有代码,Meta开放1750亿参数大模型,媲美GPT-3
OPT-175B,使人工智能更加开放和可复制。


Meta AI 在昨天公布的一篇论文可谓是炸开了锅,论文网站 paperswithcode 热搜榜第一,众多 AI 大佬推荐:


LSTM 提出者和奠基者,奥地利人工智能高级研究所(IARAI)创始人 Sepp Hochreiter 教授就在推特上进行了宣传:


社交及新闻网站 reddit 讨论量也爆表:


有研究者表示这是将大型 LM 研究引入学术界的重大一步。用一句话总结就是:Meta AI 正在开放用于人工智能研究的大型语言模型访问权限,并表示这个具有 1750 亿参数的模型,是第一个可供更广泛的人工智能研究社区使用的模型。值得注意的是,OpenAI 提出的 GPT-3 也具有 1750 亿参数,不知道这一数字是巧合还是其他。

下面我们介绍一下这项研究的主要内容
Meta AI 开放 1750 亿参数的模型

大型语言模型,即具有超过 1000 亿个参数的自然语言处理 (NLP) 系统,在过去几年中改变了 NLP 和 AI 研究。这些模型经过大量文本训练,在生成创意文本、解决数学问题、回答阅读理解等方面表现出令人惊讶的能力。

虽然在某些情况下,公众可以通过付费 API 与这些模型进行交互,但完整的研究访问权限仍然仅限于少数资源丰富的实验室。这种受限访问限制了研究人员理解这些大型语言模型如何以及为什么工作的能力,阻碍了提高其鲁棒性和减轻偏见等已知问题的进展。

根据 Meta AI 对开放科学的承诺,他们正在共享 Open Pretrained Transformer (OPT-175B),这是一个具有 1750 亿参数的模型,在公共数据集上训练而成,之所以共享这个模型,Meta AI 希望更多的社区参与理解关于大模型的基本技术。


论文地址:https://arxiv.org/pdf/2205.01068.pdf

对于这种规模的语言技术系统,该版本首次包括预训练模型以及训练和使用它们所需的代码。为了保持完整性并防止滥用,Meta AI 将在非商业许可下发布该模型,以专注于研究用例。该模型的访问权限将授予学术研究人员;隶属于政府、民间团体和学术界组织的人员;以及世界各地的工业研究实验室。

Meta AI 希望整个人工智能社区,包括学术研究人员、民间团体、政策制定者等研究者共同努力,围绕负责任的人工智能,特别是负责任的大型语言模型制定明确的指导方针,因为它们在许多下游语言应用程序中处于中心地位。人工智能社区更需要访问这些模型,以便进行可重复的研究并共同推动该领域的发展。随着 OPT-175B 和小规模基线的发布,Meta AI 也希望增加伦理方面的考虑。


公开记录文档

根据 AI 合作伙伴关系(Partnership on AI)为研究人员制定的出版指南,以及 NIST 在 2022 年 3 月概述的治理指南(第 3.4 节),Meta AI 将发布开发过程的所有记录文档,包括详细说明日常训练过程的完整 logbook,因此其他研究人员可以更轻松地在此工作基础上继续研究。此外,这些细节还揭示了用于训练 OPT-175B 的计算量以及当底层基础设施或训练过程本身大规模变得不稳定时所需的人力开销。

对此有研究者表示:研究团队的 logbook 是一个隐藏的宝石,突出了自 Lua torch 以来就存在且尚未解决的 ML 研究中的痛点 / 更广泛的问题:


Meta AI 仅使用 16 个 NVIDIA V100 GPU 来训练和部署模型的代码库,以增加这些模型的可访问性,达到专门用于研究目的。Meta AI 还全面发布了一套更小规模的基线模型,使用的数据集和 OPT-175B 相同 ,设置也和 OPT-175B 类似,这样一来研究人员能够单独研究模型规模的影响。这些小规模模型的参数包括 1.25 亿、3.5 亿、13 亿、27 亿、67 亿、130 亿和 300 亿(660 亿即将发布)。


人工智能研究的最新发展消耗了大量的计算能力。虽然行业实验室已经开始报告这些模型的碳足迹,但大多数不包括与实验研发阶段相关的计算成本,在某些情况下,这可能比训练最终模型更耗费一个数量级的资源。

Meta AI 在开发 OPT-175B 时考虑到了能源效率,其碳足迹仅为 GPT-3 的 1/7。这是通过在 Megatron-LM 中结合 Meta 的开源全分片数据并行 (FSDP) API 和 NVIDIA 的张量并行抽象来实现的。Meta AI 在 NVIDIA 的 80 GB A100 GPU 上实现了约 147 TFLOP/s/GPU 利用率,比 NVIDIA 研究人员在类似硬件上公布的数据高出大约 17%。

通过与代码库共享这些基线以有效地训练 175B 模型,Meta AI 正在减少碳足迹,同时还允许以一致的方式衡量该领域的新成果和进展。

代尔夫特理工大学助理教师 Luís Cruz 表示:很高兴看到新的人工智能论文讨论他们模型的碳足迹。尽管有非常粗略的估计,但 OPT-175B 是作为 GPT-3 的替代品提出的,其碳足迹是 GPT-3 的 1/7。


Meta AI 希望 OPT-175B 能够为大语言模型创建的前沿带来更多声音,帮助社区集体设计负责任的发布策略,为该领域的大语言模型开发增加前所未有的透明度和开放性。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
|
9月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
396 17
|
7月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
7月前
|
人工智能 数据挖掘 API
Kimi K2开源炸场,1万亿参数碾压GPT-4.1,成本仅Claude 4的1/5!
月之暗面开源的万亿参数大模型Kimi K2引发行业震动,48小时内即登顶OpenRouter API调用榜,GitHub项目激增200%。该模型在代码生成、Agent任务及中文创作上超越Claude 4,标志着中国大模型首次在三大核心能力上达到全球顶尖水平。
|
10月前
|
机器学习/深度学习 人工智能 前端开发
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
Meta最新开源的SWEET-RL框架通过优化多轮交互任务的信用分配机制,使Llama-3.1-8B模型在协作推理任务中的表现提升6%,性能达到顶尖大模型水平。
541 33
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
|
11月前
|
机器学习/深度学习 人工智能 开发者
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
GPT-4o-mini-transcribe 是 OpenAI 推出的语音转文本模型,基于 GPT-4o-mini 架构,采用知识蒸馏技术,适合在资源受限的设备上运行,具有高效、实时和高性价比的特点。
713 2
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
|
11月前
|
人工智能 自然语言处理 语音技术
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
GPT-4o mini TTS 是 OpenAI 推出的轻量级文本转语音模型,支持多语言、多情感控制,适用于智能客服、教育学习、智能助手等多种场景。
708 2
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
|
10月前
|
编解码 开发者
ImagePulse图律脉动数据集开源发布:解码GPT-4o级图像生成能力,四大原子数据集+自动生成工具开放
ImagePulse图律脉动数据集开源发布:解码GPT-4o级图像生成能力,四大原子数据集+自动生成工具开放
318 3

热门文章

最新文章