人脸网格/人脸3D重建 face_mesh(毕业设计+代码)

简介: 人脸网格/人脸3D重建 face_mesh(毕业设计+代码)

概述


Face Mesh是一个解决方案,可在移动设备上实时估计468个3D面部地标。它利用机器学习(ML)推断3D面部表面,只需要单个摄像头输入,无需专用深度传感器。利用轻量级模型架构以及整个管道中的GPU加速,该解决方案提供实时性能,对于实时体验至关重要。

此外,该解决方案还捆绑了Face Transform模块,弥合了面部地标估计和实用的实时增强现实(AR)应用之间的差距。它建立了一个度量的3D空间,并使用面部地标屏幕位置来估计该空间内的面部变换。

7d42d1ea9aeb6731b70b37a0041faa09_32c5c12021ec4fa69c4c01ad611c8bf6.png


面部变换数据包括常见的3D基元,包括面部姿势变换矩阵和三角形面网格。在底层采用了一种轻量级的统计分析方法,称为Procrustes分析,以驱动强大、高效和可移植的逻辑。分析在CPU上运行,并在ML模型推断之上具有最小的速度/内存占用。


模型算法


我们的机器学习过程由两个实时深度神经网络模型组成,它们共同工作:一个检测器在完整图像上运行,并计算面部位置;一个3D面部地标模型在这些位置上运行,并通过回归预测近似的3D表面。准确地裁剪面部极大地减少了常见数据增强的需求,如由旋转、平移和缩放变化组成的仿射变换。

65e4f4ac1a7e083af40c8bb13d0d43b6_269e6f53a9f54c42a678fb9c6fdfbd7b.png相反,它使网络能够将大部分容量专注于坐标预测准确性。此外,在我们的管道中,裁剪也可以基于上一帧中识别的面部地标生成,只有当地标模型无法再识别面部存在时,才会调用面部检测器重新定位面部。这种策略类似于我们的解决方案,它使用手掌检测器和手部地标模型。

该管道实现为使用面部地标模块中的面部地标子图的MediaPipe图,使用专用面部渲染器子图进行渲染。面部地标子图在内部使用来自面部检测模块的面部检测子图。


结论和代码


除了面部地标模型外,我们还提供另一个模型,它将注意力集中在语义上有意义的面部区域上,从而更准确地预测唇部、眼睛和虹膜周围的地标,但需要更多计算资源。它可以实现AR化妆和AR操纵等应用。

c5f26c94e16e6dfc575025b8509bb165_233380f3d3274d5a92c5d7dd1a21c9e3.png


# For static images:
#全部代码 -----qq1309399183<---------
IMAGE_FILES = []
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
with mp_face_mesh.FaceMesh(
    static_image_mode=True,
    max_num_faces=1,
    refine_landmarks=True,
    min_detection_confidence=0.5) as face_mesh:
  for idx, file in enumerate(IMAGE_FILES):
    image = cv2.imread(file)
    # Convert the BGR image to RGB before processing.
    results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    # Print and draw face mesh landmarks on the image.
    if not results.multi_face_landmarks:
      continue
    annotated_image = image.copy()
    for face_landmarks in results.multi_face_landmarks:
      print('face_landmarks:', face_landmarks)
      mp_drawing.draw_landmarks(
          image=annotated_image,
          landmark_list=face_landmarks,
          connections=mp_face_mesh.FACEMESH_TESSELATION,
          landmark_drawing_spec=None,
          connection_drawing_spec=mp_drawing_styles
          .get_default_face_mesh_tesselation_style())


全部代码私信会回复!



相关文章
|
人工智能 机器人 人机交互
哥大华人开发人脸机器人,照镜子自主模仿人类表情超逼真
【4月更文挑战第3天】哥伦比亚大学研究人员开发了一款名为Emo的机器人,能观察并模仿人类面部表情,实现更自然的人机交互。Emo配备26个面部执行器和高分辨率摄像头,通过“自我建模”学习模仿表情,并能预测人类表情变化。这一创新有望改善人机理解和响应情绪的能力,应用于教育、医疗等领域,但也引发了关于情感依赖和伦理问题的讨论。
452 4
哥大华人开发人脸机器人,照镜子自主模仿人类表情超逼真
|
机器学习/深度学习 存储 人工智能
5秒实现AI语音克隆(Python)
推荐一个有趣的AI黑科技--MockingBird,该项目集成了Python开发,语音提取、录制、调试、训练一体化GUI操作,号称只需要你的 5 秒钟的声音,就能实时克隆出你的任意声音
|
算法 网络安全 数据安全/隐私保护
证书转换-SSL证书生成:cer,jks文件 韩俊强的博客
一.生成.jks文件 资料:HTTPS-老司机手把手教你SSL证书申购-TrustAsia证书 HTTPS时代已来,手把手指导申请免费SSL证书 1、keystore的生成: 分阶段生成: keytool -genkey -alias yushan(...
8483 0
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
466 1
|
XML 算法 计算机视觉
使用OpenCV进行人脸检测和戴墨镜特效实战(附Python源码)
使用OpenCV进行人脸检测和戴墨镜特效实战(附Python源码)
918 1
|
机器学习/深度学习 数据可视化 自动驾驶
YOLO11-seg分割如何训练自己的数据集(道路缺陷)
本文介绍了如何使用自己的道路缺陷数据集训练YOLOv11-seg模型,涵盖数据集准备、模型配置、训练过程及结果可视化。数据集包含4029张图像,分为训练、验证和测试集。训练后,模型在Mask mAP50指标上达到0.673,展示了良好的分割性能。
6062 4
|
存储 运维 监控
【Docker专栏】Docker日志管理与监控的最佳方法
【5月更文挑战第7天】本文探讨了Docker容器的日志管理与监控,强调其在运维中的重要性。Docker默认使用`json-file`日志驱动,可通过`docker logs`命令查看。建议选择合适日志驱动,配置日志选项,并集成ELK Stack等工具进行高级分析。实时监控、设置警报、分析数据和审计日志是实践关键。最佳实践包括日志数据与容器数据分离、使用日志代理、保护敏感信息及遵守法规。关注新技术以提升系统稳定性和安全性。
1704 10
【Docker专栏】Docker日志管理与监控的最佳方法
|
Ubuntu 安全 网络协议
|
机器学习/深度学习 存储 算法
技术好文:ttf文件结构解析
技术好文:ttf文件结构解析
803 0
|
存储 编解码 vr&ar
ICLR 2024:单张图像完成逼真的三维重建
【2月更文挑战第28天】ICLR 2024:单张图像完成逼真的三维重建
546 2
ICLR 2024:单张图像完成逼真的三维重建

热门文章

最新文章