8月AI论文GitHub十强榜出炉!语言-图像模型连斩Top2(3)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
票据凭证识别,票据凭证识别 200次/月
简介: 8月AI论文GitHub十强榜出炉!语言-图像模型连斩Top2

9. 无需模型的强化学习


深度强化学习是在不需要领域知识的不可控环境中学习策略的一种有效的方法。


不幸的是,由于样本的低效率,深度强化学习的应用主要集中在模拟环境中。

在这项工作中,研究人员证明了机器学习算法和库的最新进展与精心调整的机器人控制器相结合,在现实世界中只需20分钟就能学会四足动物的运动。


论文链接:https://arxiv.org/abs/2208.07860

代码链接:https://github.com/ikostrikov/walk_in_the_park


研究人员在几个室内和室外的地形上评估了该方法,这些地形对于经典的基于模型的控制器来说是具有挑战性的,观察到机器人能够在所有这些地形上持续学习行走步态,文中也在一个模拟环境中评估了该设计决策。



10. 物联网攻击检测


现代车辆,包括自动驾驶车辆和联网车辆,通过与其他车辆、智能设备和基础设施的连接和通信,逐渐包含了越来越多的功能。


但车联网(IoV)日益增长的连接性也增加了对网络攻击的脆弱性。



为了保护物联网系统免受网络威胁,有研究使用机器学习(ML)方法开发了能够识别恶意网络攻击的入侵检测系统(IDS)。


为了准确地检测物联网网络中的各种类型的攻击,研究人员提出了一个全新的集成IDS框架,取名为为领导者类和信心决策集成(Leader Class and Confidence Decision Ensemble, LCCDE)。



论文链接:https://arxiv.org/abs/2208.03399

代码链接:https://github.com/Western-OC2-Lab/Intrusion-Detection-System-Using-Machine-Learning


通过在三种最先进的ML算法(XGBoost、LightGBM和CatBoost)中为每一类或每一种攻击类型确定表现最好的ML模型。


然后利用具有预测置信度值的类领袖模型,对各种类型的网络攻击的检测做出准确的决定。


在两个公共物联网安全数据集(Car-Hacking和CICIDS2017数据集)上的实验证明了所提出的LCCDE对车辆内部和外部网络的入侵检测的有效性。


推特排名前十的研究



参考资料:https://www.reddit.com/r/MachineLearning/comments/x4vppv/d_most_popular_ai_research_aug_2022_ranked_based/

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
100 2
|
6天前
|
机器学习/深度学习 人工智能 机器人
何恺明新作出炉!异构预训练Transformer颠覆本体视觉学习范式,AI性能暴涨超20%
【10月更文挑战第29天】在机器人学习领域,训练通用模型面临数据异构性的挑战。近期研究“Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers”提出异构预训练Transformer(HPT),通过大规模预训练学习跨不同本体和任务的共享表示,显著提升了性能。实验结果显示,HPT在未见过的任务上表现优异,性能提升超过20%。
21 6
|
12天前
|
人工智能 JavaScript 前端开发
利用 AI 进行代码生成:GitHub Copilot 的实践与反思
【10月更文挑战第23天】本文探讨了GitHub Copilot,一个由微软和OpenAI合作推出的AI代码生成工具,其核心功能包括智能代码补全、多语言支持、上下文感知和持续学习。文章介绍了Copilot在加速开发流程、学习新语言、提高代码质量和减少重复工作等方面的应用,并反思了AI在代码生成中的代码所有权、安全性和技能发展等问题。最后,文章提供了实施Copilot的最佳实践,强调了在使用AI工具时保持对代码的控制和理解的重要性。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
DGLM(Diffusion Guided Language Modeling)是一种新型框架,结合了自回归模型的流畅性和扩散模型的灵活性,解决了现有引导生成方法的局限性。DGLM通过扩散网络生成语义提案,并使用轻量级提示生成器将嵌入转化为软提示,引导自回归解码器生成文本。该方法无需微调模型权重,易于控制新属性,并在多个基准数据集上表现出色。实验结果显示,DGLM在毒性缓解、情感控制和组合控制等方面优于现有方法,为可控文本生成提供了新的方向。
44 10
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
|
2月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
68 7
|
2月前
|
人工智能 开发者
Nature曝惊人内幕:论文被天价卖出喂AI!出版商狂赚上亿,作者0收入
【9月更文挑战第8天】《自然》杂志近日揭露,学术出版商如泰勒·弗朗西斯与微软签订千万美元合约,及威利获高额报酬,将论文提供给科技巨头训练AI模型,引发学界对版权与收益分配的热议。此现象反映了AI对高质量数据的渴求,但亦使研究人员担忧成果被无偿商用,且可能影响学术独立性。尽管AI训练使用学术资源能提升模型科学性,助力科研进展,但如何保障作者权益及维持学术纯粹性仍是亟待解决的问题。https://www.nature.com/articles/d41586-024-02599-9
48 4
|
3月前
|
人工智能 JavaScript Go
介绍 Agency: 使AI与Go语言无缝对接
介绍 Agency: 使AI与Go语言无缝对接
|
4月前
|
人工智能 JavaScript 搜索推荐
2024 中国开发者调查报告出炉:通义灵码是开发者最常用的 AI 编码辅助工具
2024 中国开发者调查报告出炉:通义灵码是开发者最常用的 AI 编码辅助工具
454 10
|
4月前
|
机器人 vr&ar 计算机视觉
|
3月前
|
SQL 人工智能 SEO
下一篇
无影云桌面