基于IMM和UKF的机动目标跟踪matlab仿真

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 基于IMM和UKF的机动目标跟踪matlab仿真

1.算法描述

    交互式多模型(Interacting Multiple Model,简称IMM)是一种算法,具有自适应的特点,能够有效地对各个模型的概率进行调整,尤其适用于对机动目标的定位跟踪。交互式多模型算法包含了多个滤波器(各自对应着相应的模计器,一个交互式作用器和一个估计混合器),多模型通过交互作用跟踪一个目标的机动运动,各模型之间的转移由马尔可夫概率转移矩阵确定,其中的元素Pij表示目标由第i个运动模型转移到第j个运动模型的概率。

 在Kalman滤波算法中用到了状态转移方程和观测方程,被估计量随时间变化,他是一种动态估计。在目标跟踪中,不必知道目标的运动模型就能够实时地修正状态参量(位置、速度等信息),有良好的适应性。但是当目标运动运动变得复杂时(比如加速、减速等),仅仅用kalman滤波得不到理想的效果。这时就需要用自适应算法。交互多模型(IMM)是一种软切换算法,现在在机动目标领域得到广泛应用。该算法主要通过两个或更多的模型来描述工作过程中可能的状态,最后通过有效的加权融合进行系统状态估计,能够很好的克服单模型估计误差大的问题。

  IMM算法采用多个Kalman滤波器进行并行处理。每一个滤波器对应着不同的状态空间模型,不同的状态空间模型描述不同的目标运动模式,因此每一个滤波器对目标的状态估计是不同的。

  IMM算法的基本思想:

  1、在每个时刻,假设某个模型在现在时刻有效的前提下,通过混合前一时刻所有滤波器的状态估计值来获得与这个特定模型匹配的滤波器的初始条件;

  2、然后对每一个并行实现正规滤波(预测和修正)步骤;

  3、最后,以模型匹配似然函数为基础更新模型概率,并组合所有滤波器修正后的状态估计值(加权和)来得到状态估计。

  因此IMM算法的估计结果是对不同模型所得估计的混合,而不是仅仅在每个时刻选择完全正确的模型来估计。下面我门通过一些公式来具体学习一下。

  IMM算法步骤:

  假定运动目标有r种运动状态,对应有r个运动模型(相当于有r个状态转移方程),假设第j个模型的目标状态方程为:

7c4433ce47b828d4f5569c15823930c5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  公式中,Wj(k)是均值为0,Gj(k)是噪声驱动矩阵,协方差矩阵为Qj的白噪声序列。各个模型之间的转移是通过马尔科夫概率转移矩阵确定的,其中元素pij表示目标由第i个运动模型转移到第j个运动模型的概率。

2.仿真效果预览
matlab2022a仿真结果如下:
b76b803617b0fcf7be89d3a20bf12cf1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
49dbd35649db8689ba449deaebc100d1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9edf5fb76dd83a95939eac6ff456da67_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
058277665571f9b7f0ca76e4760688bf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c754fd1be47cef5a4fd6c412215642fa_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0eff7519a47e3296b5cebf0956a226d0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f492f1b0c337567c217db12fd60b7b5c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
55439e92f73aecb7bda9b196c950b61b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

    %第一步 模型条件重初始化
    %1。首先计算混合概率
    %计算c
    c_1=pai(1,1)*miu_CV+pai(2,1)*miu_CA;
    c_2=pai(1,2)*miu_CV+pai(2,2)*miu_CA;
    %计算miu_temp
    %2。进行混合估计
    %匀速运动模型
    X1=X11*miu11+X22*miu21;%
    P1=(P11+(X1-X1)*(X11-X1)')*miu11+(P22+(X22-X1)*(X22-X1)')*miu21;
    PP(:,:,k)=P1;
............................................................................
    si1(:,1)=X1;
    for ii=2:7
        si1(:,ii)=X1+((i+a)^(0.5))*A1(:,ii-1);
    end
    for ii=8:13
        si1(:,ii)=X1-((i+a)^(0.5))*A1(:,ii-7);
    end
    X1=Wm0*SI1(:,1);
    for ii=2:13
        X1=X1+Wm*SI1(:,ii);
    end
    
    Xk1=X1;
    
    Pk1=Wc0*(SI1(:,1)-X1)*((SI1(:,1)-X1)');
    for ii=2:13
        Pk1=Pk1+Wc*(SI1(:,ii)-X1)*((SI1(:,ii)-X1)');
    end
    Pk1=Pk1+Qk1; 
    
    %利用预测取样点预测测量取样点
     for ii=1:13
      zk1(:,ii)=FZ(SI1(:,ii));
     end
     
    %预测测量值
    Zk1=Wm0*zk1(:,1);
    for ii=2:13
        Zk1=Zk1+Wm*zk1(:,ii);
    end
    %%%%%%量测更新%%%%%%%
..............................................................................
    si2(:,1)=X2;
    for ii=2:7
        si2(:,ii)=X2+((i+a)^(0.5))*A2(:,ii-1);
    end
    for ii=8:13
        si2(:,ii)=X2-((i+a)^(0.5))*A2(:,ii-7);
    end
    %%%%%%时间更新%%%%%%%
    %利用状态方程传递取样点
  for ii=1:13
      SI2(:,ii)=FX2(si2(:,ii));
  end
%     %利用预测取样点,权值计算预测均值和协方差
    X2=Wm0*SI2(:,1);
    for ii=2:13
        X2=X2+Wm*SI2(:,ii);
    end
    
    Xk2=X2;
    
    Pk2=Wc0*(SI2(:,1)-X2)*((SI2(:,1)-X2)');
    for ii=2:13
        Pk2=Pk2+Wc*(SI2(:,ii)-X2)*((SI2(:,ii)-X2)');
    end
    Pk2=Pk2+Qk2; 
    
    %利用预测取样点预测测量取样点
     for ii=1:13
      zk2(:,ii)=FZ(SI2(:,ii));
     end
     
    %预测测量值
    Zk2=Wm0*zk2(:,1);
    for ii=2:13
        Zk2=Zk2+Wm*zk2(:,ii);
    end
   %计算UKF增益,更新状态向量和方差
    zk2=Z(:,k)-Zk2;
    K2=Pxz2*(inv(Pzz2));
    X2=X2+K2*(Z(:,k)-Zk2);
    P2=Pk2-K2*Pzz2*(K2)';
    Xe2(:,k)=X2;                                  
    %...........................................................................
    %第四步 估计融合  
    X=X1*miu_CV+X2*miu_CA;
end
相关文章
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
7天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
211 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)