进程间通信(二)/共享内存

简介: 学习进程间通信的第二种方法:共享内存。了解共享内存和管道的区别,共享内存的优缺点。以及通过代码来感受共享内存实现的进程间通信。

⭐前言:在前面的博文中分析了什么的进程间通信和进程间通信的方式之一:管道(匿名管道和命名管道)。接下来分析第二种方式:共享内存。

 

要实现进程间通信,其前提是让不同进程之间看到同一份资源。所谓共享内存,那就是不同进程之间,可以看到内存中同一块资源,这就是共享内存的概念。

共享内存原理

用户通过操作系统提供的系统调用,让操作系统帮助用户去申请一块空间,跟C语言中malloc函数、C++的new的意思差不多。创建好后,将创建好的内存映射到进程地址空间中,然后返回这个地址的起始地址给用户。最后,当结束通信后,就会取消进程和内存的映射关系去掉,然后释放这段内存空间!

而这段内存,就称为共享内存!进程与内存关联的行为称为挂接。取消进程与内存的映射关系,称为去关联。释放这段内存,叫做释放共享内存。

4HN2HYNQ$MZCP$E_R]6YIF6.png

理解共享内存的开辟

①用户申请开辟共享内存空间的系统接口,是专门为了进程间通信而设计出来的,可以让不同进程同时跟其建立关联。跟malloc,new等等的函数不一样,它们虽然也可以在物理内存上开辟空间,但是只能用于本身进程。

②共享内存是一种通信方式,意味着所有想通信的进程都可以使用它。

③既然共享内存是一种通信方式,因此在OS中,一定存在多个共享内存!

实例代码

共享内存函数

按照上图的步骤:第一步,创建共享内存。以下是创建共享内存的两个函数。

①shmget函数

功能:用来创建共享内存

原型:int shmget(key_t key, size_t size, int shmflg);

头文件:#include<sys/ipc.h>  #include<sys/shm.h>

参数:

       key : 这个共享内存段名字。

       size : 共享内存大小

       shmflg : 由九个权限标志构成,它们的用法和创建文件时使用的mode模式标志是一样

其中重要的两个:

IPC_CREAT:如果不存在,创建之。如果存在,获取之。

IPC_EXCL:无法单独使用。需要与IPC_CREAT结合使用,

IPC_CREAT | IPC_EXCL:如果不存在,创建之。如果存在,出错并返回。如果创建成功,那么一定是一个新的共享内存。

返回值:成功返回一个非负整数,即该共享内存段的标识码;失败返回 - 1

shmget函数中的参数key,它能够标定唯一性!因为需要保证一个进程去申请共享内存,另外的进程去获取这个共享内存,它们的共享内存是同一个共享内存!而获取key是通过ftok函数来获取的。

②ftok函数

功能:将一个路径明和一个项目标识符转化成一个IPC的key

原型:key_t ftok(const char* pathname , int proj_id);

头文件:#include<sys/ipc.h> #include<sys/types.h>

参数:

       pathname:传进来的字符串

       proj_id:项目标识符

返回值:成功返回key;失败返回-1

只要不同进程在调用ftok的时候,参数一模一样,获取相同的key,再去调用shmget函数,通过同一个key,就能访问同一个共享内存。

补充说明:

共享内存=物理内存块+共享内存的相关属性

上面谈到,OS中一定存在多个共享内存,而OS必须要对这些用户申请开辟的空间进行管理!即先描述再组织,因此,OS会对开辟的共享内存创建一个数据结构,一个共享内存一个数据结构,然后通过链表链接起来,统一管理。于是,在谈到申请开辟一块共享内存,就需要想到:共享内存 = 物理内存块 + 共享内存的相关属性!

key值被包含在了共享内存的属性中。

共享内存的相关属性被包含在共享内存的数据结构中,而其中的key值也包含在了里面。即key值是在shmget函数创建出来后被设置进入共享内存的属性当中,用来表示该共享内存,并表示该共享内存在内核中的唯一性!

shmid和key的关系区分

shmget函数返回值,假设命名为shmid。那么shmid与key的关系就如同在文件IO中的文件描述符fd和inode的关系一样,inode是一个文件一个inode,表示文件的唯一性,key是一个共享内存一个,表示的是共享内存的唯一性,它们都是底层访问目标的工具。但是上层是不用key或inode的,而是使用shmid和fd这样一个特定的整数来访问。一句话来说,一个是用户的,一个是系统的,两个互不干扰,这是它的好处。

查看共享内存指令

ipcs -m

ipc资源的特征

共享内存的生命周期是随操作系统的,不是随进程的,即使进程终止了,但没有去释放这段共享内存,那么它就会一直存在。

删除共享内存

ipcrm -m shmid

按照上图所示:以下是删除共享内存的函数。

③shmctl函数

功能:用于控制共享内存,即删除共享内存,设置共享内存属性等等

原型:int shmctl(int shmid, int cmd, struct shmid_ds *buf);

头文件:#include<sys/ipc.h> #include<sys/shm.h>

参数:

       shmid:由shmget返回的共享内存标识码。

       cmd:将要采取的动作(有三个可取值)

动作:

①IPC_STAT:获取共享内存属性

②IPC_SET:设置共享内存属性

③IPC_RMID:删除共享内存

       buf:指向一个保存着共享内存的模式状态和访问权限的数据结构

返回值:成功返回0;失败返回-1

按照上图所示,以下是将共享内存映射到进程地址空间的函数。

④shmat函数

功能:将共享内存段连接到进程地址空间

原型:void *shmat(int shmid, const void *shmaddr, int shmflg);

头文件:#include<sys/shm.h>   #include<sys/types.h>

参数:

       shmid: 共享内存标识,即想和哪个共享内存关联起来

       shmaddr:指定连接的地址。就是想把这个共享内存映射到哪个进程地址空间中,给出这个进程地址。

       shmflg:它的两个可能取值是SHM_RND和SHM_RDONLY

返回值:成功返回一个指针,指向共享内存;失败返回-1

使用完后,不直接删除共享内存,而是先去关联。以下是去关联的函数。

⑤shmdt函数

功能:将共享内存段与当前进程脱离

原型:int shmdt(const void *shmaddr);

头文件:#include<sys/shm.h>   #include<sys/types.h>

参数:shmaddr: 由shmat所返回的指针

返回值:成功返回0;失败返回-1

注意:将共享内存段与当前进程脱离不等于删除共享内存段

示例代码代码如下:

代码思路:创建一段共享内存,创建两个没有亲属关系的进程,client进程负责写入,server进程负责读取。

头文件comm.hpp:

#ifndef _COMM_HPP_
#define _COMM_HPP_
#include <iostream>
#include <cerrno>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <sys/ipc.h>
#include <sys/shm.h>
#define PATHNAME "."
#define PROJ_ID 0X66
//设置共享内存大小:建议为4KB的整数倍
//因为系统分配共享内存是以4KB为单位的!
#define MAX_SIZE 4096
//获取key
key_t getKey()
{
    //通过ftok函数获取key
    key_t k = ftok(PATHNAME,PROJ_ID);//获得同一个key
    if(k < 0)
    {
        std::cerr<<errno<<":"<<strerror(errno)<<std::endl;
        exit(1);
    }
    return k;
}
//创建共享内存
int getShmHelper(key_t k,int flags)
{
    //通过shmget函数创建共享内存。
    //第一个参数是key,第二个参数是共享内存的大小。第三个参数是权限标志
    int shmid = shmget(k,MAX_SIZE,flags);//创建共享内存
    if(shmid<0)
    {
        std::cerr<<errno<<":"<<strerror(errno)<<std::endl;
        exit(2);
    }
    return shmid;
}
//通过封装函数给用户去使用,只需传入key值即可。
//获取共享内存,不一定要新的,因为不用调用它的进程去创建新的
int getShm(key_t k)
{
    return getShmHelper(k,IPC_CREAT);
}
//创建共享内存,使用IPC_CREAT | IPC_EXCL,确定创建的共享内存一定是新的。需要给权限0600
int createShm(key_t k)
{
    return getShmHelper(k,IPC_CREAT | IPC_EXCL | 0600);
}
//进程地址空间与共享内存相联
void* attachShm(int shmid)
{
    //通过shmat函数将共享内存段连接到进程地址空间
    //传入shmid和指定连接的进程地址的地址,但是这个一般不填,系统会自动去填
    //第三个参数是权限标志,是对内存只读还是读写。
    //在Linux系统中,一般是64位。我们这里需要将shmat函数返回的指针判断是否关联成功
    //强行转化为longlong
    void *men = shmat(shmid,nullptr,0);
    if((long long)men==-1L)
    {
        std::cerr<<errno<<":"<<strerror(errno)<<std::endl;
        exit(3);
    }
    return men;//返回起始地址
}
void detachShm(void* start)
{
    //通过shmdt函数去关联
    if(shmdt(start)==-1)
    {
        std::cerr<<errno<<":"<<strerror(errno)<<std::endl;
    }
}
void delShm(int shmid)
{
    //通过shmctl函数删除共享内存
    //第一个参数是函数是需要对哪个共享内存操作,那个共享内存
    //第二个参数是需要进行什么样的操作
    //第三个参数一般给nullptr
    if(shmctl(shmid,IPC_RMID,nullptr)==-1)
    {
        std::cerr<<errno<<":"<<strerror(errno)<<std::endl;
    }
}

image.gif

负责写入的进程程序代码client.cc:

#include"comm.hpp"
#include<unistd.h>
int main()
{
    //第一步:创建key,创建共享内存
    key_t k = getKey();//获取key
    printf("key: 0x%x\n",k);//查看key值
    int shmid = getShm(k);//创建共享内存
    printf("shmid:%d\n",shmid);//查看shmid
    //第二步:关联内存和进程地址空间
    char* start = (char*)attachShm(shmid);
    printf("attach success,address start: %p\n",start);//查看起始地址
    //开始使用
    //写下需要往共享内存段写入的数据
    const char* message = "hello server,我是另一个进程,正在和你通信";
    pid_t id = getpid();
    int cnt = 1;
    while(true)
    {
        sleep(5);
        //写入到共享内存段,将共享内存段当字符串,不需要额外char buffer[];
        snprintf(start,MAX_SIZE,"%s[pid:%d][消息编号:%d]",message,id,cnt++);
    }
    //去关联
    detachShm(start);
    //这个工程项目不需要删除共享内存
    return 0;
}

image.gif

负责读取的进程的程序代码server.cc

#include"comm.hpp"
#include<unistd.h>
int main()
{
    key_t k = getKey();//获取key值
    printf("key: 0x%x\n",k);//查看key值
    int shmid = createShm(k);//创建共享内存,必须是新的
    printf("shmid: %d\n",shmid);//查看共享内存
    //关联
    char* start = (char*)attachShm(shmid);
    printf("attach success, address start: %p\n", start);
    //使用
    while(true)
    {
        //读取共享内存中的数据
        printf("client say: %s\n",start);
        //获取共享内存中的属性数据(部分)
        struct shmid_ds ds;
        shmctl(shmid,IPC_STAT,&ds);
        printf("获取属性: size: %d, pid: %d, myself: %d, key: 0x%x",\
                ds.shm_segsz, ds.shm_cpid, getpid(), ds.shm_perm.__key);
        sleep(1);
    }
    //去关联
    detachShm(start);
    //删除共享内存
    delShm(shmid);
    return 0;
}

image.gif

结果如下:在第一个五秒时,共享内存中没有任何数据。第二个五秒,消息编号为1。第三个五秒,消息编号为2......

H3HC`UUJWCQ~P0BFNC{(`}G.png

对于从内核数据结构中获取共享内存的属性,发现没有直接显示key值。但实际上key值是在这个内核数据结构中里面的另外一个结构体里面。

]YIZNF~0{B){DS(RO]O_9RC.png

共享内存的优缺点

优点:所有使用共享内存的进程通信,速度是最快的!能大大减少数据拷贝的次数!并且生命周期是随系统的!那么,如果我们考虑到同样一份代码,分别使用管道和共享内存的话,并且考虑键盘输入和显示器输出,那么管道有几次拷贝?共享内存有几次拷贝?

1KB4[O8P9ZUQD16RIWEZ7NK.png

如图,管道的话,需要创建buffer来获取数据,然后通过管道进行通信。而共享内存不需要,因为共享内存可以作为字符串空间,直接写入和读取数据。因此,根据上图所示,管道是6次拷贝,共享内存是4次拷贝。当然,代码不同,拷贝的次数也不会同。

缺点:共享内存没有同步和互斥!

相关文章
|
6天前
|
消息中间件 存储 网络协议
从零开始掌握进程间通信:管道、信号、消息队列、共享内存大揭秘
本文详细介绍了进程间通信(IPC)的六种主要方式:管道、信号、消息队列、共享内存、信号量和套接字。每种方式都有其特点和适用场景,如管道适用于父子进程间的通信,消息队列能传递结构化数据,共享内存提供高速数据交换,信号量用于同步控制,套接字支持跨网络通信。通过对比和分析,帮助读者理解并选择合适的IPC机制,以提高系统性能和可靠性。
59 14
|
3月前
麒麟系统mate-indicators进程占用内存过高问题解决
【10月更文挑战第7天】麒麟系统mate-indicators进程占用内存过高问题解决
408 2
|
13天前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
72 20
|
4月前
|
存储 Linux 调度
深入理解操作系统:从进程管理到内存分配
【8月更文挑战第44天】本文将带你深入操作系统的核心,探索其背后的原理和机制。我们将从进程管理开始,理解如何创建、调度和管理进程。然后,我们将探讨内存分配,了解操作系统如何管理计算机的内存资源。最后,我们将通过一些代码示例,展示这些概念是如何在实际操作系统中实现的。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
|
1月前
|
C语言 开发者 内存技术
探索操作系统核心:从进程管理到内存分配
本文将深入探讨操作系统的两大核心功能——进程管理和内存分配。通过直观的代码示例,我们将了解如何在操作系统中实现这些基本功能,以及它们如何影响系统性能和稳定性。文章旨在为读者提供一个清晰的操作系统内部工作机制视角,同时强调理解和掌握这些概念对于任何软件开发人员的重要性。
|
1月前
|
Linux 调度 C语言
深入理解操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅,从进程管理的基本概念出发,逐步探索到内存管理的高级技巧。我们将通过实际代码示例,揭示操作系统如何高效地调度和优化资源,确保系统稳定运行。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇了解操作系统深层工作原理的大门。
|
2月前
|
算法 调度 开发者
深入理解操作系统:从进程管理到内存分配
本文旨在为读者提供一个深入浅出的操作系统知识之旅,从进程管理的基础概念出发,探索内存分配的策略与技巧。我们将通过实际代码示例,揭示操作系统背后的逻辑与奥秘,帮助读者构建起对操作系统工作原理的直观理解。文章不仅涵盖理论知识,还提供实践操作的指导,使读者能够将抽象的概念转化为具体的技能。无论你是初学者还是有一定基础的开发者,都能在这篇文章中找到有价值的信息和启发。
|
2月前
|
算法 调度 C++
深入理解操作系统:从进程管理到内存分配
【10月更文挑战第42天】本文将带你进入操作系统的神秘世界,探索其核心概念和关键技术。我们将从进程管理开始,了解操作系统如何协调和管理多个程序的运行;然后,我们将深入研究内存分配,看看操作系统如何有效地分配和管理计算机的内存资源。通过这篇文章,你将获得对操作系统工作原理的深入理解,并学会如何编写高效的代码来利用这些原理。
|
2月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
|
3月前
|
缓存 算法 调度
深入浅出操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅。我们将从进程管理的基本概念出发,逐步深入到内存管理的复杂世界,最终探索如何通过实践技巧来优化系统性能。文章将结合理论与实践,通过代码示例,帮助读者更好地理解操作系统的核心机制及其在日常技术工作中的重要性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往操作系统深层次理解的大门。

热门文章

最新文章

相关实验场景

更多